
Let's begin by fixing the bug in the proof from last time.

Last time, we defined CTerm and CVal to be “mostly closed” in order to
simplify the statement of the fundamental theorem. It didn't work. We
wanted to avoid adding δ, the closing syntactic substitutions.

ere are two ways to fix the setup/proof.

• e simple solution: Make sure everything is closed. We'll take this
approach for now.

• Unexplored: We might define E and V modulo changes in the syntactic
types. We may take this approach with later models.

Note in the statement of the fundamental theorem that δ and ρ have
nothing to do with each other: e syntactic types play no role
dynamically.

e fundamental theorem is fundamental because it says that syntactic
terms inhabit the model.

(We went over my proof.)

— Variation: Avoid canonical forms in V[σ→τ]ρ and V[∀α.τ]ρ.

Let's discuss some variations on the model we've defined. (Pay
particular aention to this first one.)

Idea: We might avoid making explicit the canonical forms of → and ∀
types in the definition of V.

Before, we had
V[σ→τ]ρ := { λx.e | ∀v ∈ V[σ]ρ. e[v/x] ∈ E[τ]ρ }.

is isn't necessary. We could have wrien
V[σ→τ]ρ := { v | ∀v' ∈ V[σ]ρ. v v' ∈ E[τ]ρ }.

at's a lile closer to what Girard did in his original proof.

Similarly, we could change
V[∀α.τ]ρ := { Λα.e | ∀σ ∈ CTyp. ∀S ∈ Cand. e[σ/α] ∈ E[τ](ρ, α ↦ S) }

to
V[∀α.τ]ρ := { v | ∀σ ∈ CTyp. ∀S ∈ Cand. v σ ∈ E[τ](ρ, α ↦ S) }.

In this seing, we're fine because if v v' is in the model, then we
know aer one step of β-reduction, we're in the model.



We'll have to be much more careful about this kind of thing when we
start using step-indexing: Such models are sensitive to the number of
β-reduction steps.

For some of the results we'll seek, this variant is a lile slicker.

(Aside: Neel pointed out that if you have constants inhabiting your
arrow type that aren't necessarily lambdas, this formulation is more
useful.)

— Variation: Use type-erased terms.

We'll simply sketch the other variation.

Idea: Define the model using type-erased terms. (To avoid this δ
nonsense.)

Let's define
Erased Terms

hat{e} ::= x | λx.hat{e} | hat{e₁} hat{e₂} | Λ.hat{e} | hat{e}[]

We indicate where type abstractions and applications occur, but don't
bother with the types.

We have to define reduction hat{↦} on erased terms. It's defined
exactly as before, except

(Λ.hat{e})[] hat{↦} hat{e}.

We define a function
|–| : Term → ErasedTerm

e interesting cases of this function:
|Λα.e| = Λ.|e|
|e σ| = |e|[].

e idea: Build the model over erased terms and erased values. e
interesting case:

V[∀α.τ]ρ := { v | ∀S ∈ Cand. v[] ∈ E[τ](ρ, α ↦ S) }

(We don't need ∀σ ∈ CTyp.)

Of course, we'll have to rephrase the fundamental theorem:



If Δ; Γ ⊢ e : τ,
then ∀ρ ∈ D[Δ]. ∀γ ∈ G[Γ]ρ. γ|e| ∈ E[τ]ρ.

(We managed to drop the syntactic substitutions δ.)

To reason about the original language, we'll have to somehow connect
up the reduction behavior of terms to that for erased terms. Establish
a simulation between the reduction of terms and the reduction of
erased terms using the following handy lemma.

i. e ↦ e' ⇒ |e| hat{↦} |e'|
ii. |e| hat{↦} hat{e} ⇒ ∃e'. e ↦ e' ∧ |e'| = hat{e}.

Now, when we apply the fundamental theorem, the model will give us

⊢ e : τ ⇒ |e| ↓ hat{v}.

By iteratively applying (ii), we get e ↓ v.

(Aside: If we rely on progress and preservation—which we know—then we
could probably get away with just (i) in the lemma.)

Discussion: Which treatment of type variables is beer?

1. In our original model, δ's get pushed around through our proofs (to
no real purpose).

2. With this variant, we define some (otherwise useless) shadow
semantics to avoid needless cluer in the definition of the model and
its metatheory.

3. You could avoid proving the bisimulation by taking the reduction on
erased terms *as* the operational semantics. (Neel and Deepak ask why
we care about the semantics that mentions types but doesn't use them?)

On the one hand is your program, the thing you type-check. On the
other hand is a computation (derived from the program), the thing with
a dynamics.

4. Yet another approach (taken by Ahmed but thought distasteful by
Derek): Just work with terms like Λ.e and give typing rules at that
level. is becomes problematic; for example, if you have modules.



Derek's preferred approach is to use the langauge with types for
statics and the langauge without for dynamics.

— Some theorems we can prove with Girard's method

Some of this material doesn't seem to exist in the literature. We're
doing things with parametricity in a strictly operational seing.
Most early work used denotational models.

(Aside from Neel: e operational semantics was behind the scenes in
the 20 years of research on denotational approaches.)

(Aside from Dave: I prefer stating these definability of types results
using terms rather than values. I leave things as Derek proved them.)

Example: System F has no closed values of type ∀α.α.

(Aside: Rather than cluer our proof, we simply drop empty
ρ's and we let the reader infer domains of quantification from
the model; for example, writing ∀σ rather than ∀σ ∈ CTyp.)

⊢ v : ∀α.α ⇒ v ∈ V[∀α.α]
⇔ ∀σ,S. v σ ∈ E[α]α ↦ S.

Pick any σ and S := ∅. ere exists v' satisfying
v σ ∈ E[α]α ↦ ∅
⇒ v σ ↦∗ v' ∈ V[α]α ↦ ∅ = ∅,

a contradiction.

We want to prove that if ⊢ f : ∀α.α → α, then f “behaves like the
identity”. We won't define “behavior equivalence” until we get to the
relational model.

Example:
If f ∈ CVal
and ⊢ f : ∀α.α → α,
then ∀σ ∈ CTyp, v ∈ CVal. f σ v ↓ v.

(Incidentally, this is the kind of theorem you don't see in
the work with denotational models. ey're concerned with a
coarser level of equality. Here, v on the right is
syntactically identical to v on the le.)

⊢ f : ∀α.α → α ⇒ f ∈ V[∀α.α → α]



⇔ ∀σ', S. f σ' ∈ E[α → α]α ↦ S.

Take σ' := σ and S := {v}. ere exist v_f and v' satisfying
f σ ∈ E[α → α]α ↦ {v}
⇒ f σ ↦∗ v_f ∈ V[α → α]α ↦ {v}
⇒ v_f v ∈ E[α]α ↦ {v}
⇒ v_f v ↦∗ v' ∈ V[α]α ↦ {v} = {v}.

Example:
Set bool := ∀α.α→α→α
and true := Λα.λx.λy.x
and false := Λα.λx.λy.y.

If f ∈ CVal,
and ⊢ f : bool,
then ?.

With this model, we won't be able to show f “behaves like”
either true or false.

We would like to show:
(∀σ, v₁, v₂. f σ v₁ v₂ ↓ v₁) ∨
(∀σ, v₁, v₂. f σ v₁ v₂ ↓ v₂).

We can only show: ∀σ, v₁, v₂. f σ v₁ v₂ ↓ v ∈ {v₁, v₂}.

is is weaker: With a particular (v,v') f might return v;
with some other (w,w'), f might return w'.

So let's prove what we can with this model. We'll be quick
about these free theorems.

By FTLR. f ∈ V[∀α.α → α → α].
Pick S := {v₁, v₂}.
We'll get our (weaker) goal.

— eorems provable in the unary vs binary models

Let's state the boolean example in a slightly different way. (is
will generalize nicely to the other kinds of types that are definable
in System F.)

eorem (a free theorem):
(a) ⊢ f : bool ⇒ f bool true false ↓ v ∈ {true,false}.



Understand “f bool true false” as just an η-expansion of f *at the
type bool*. Informally, the η-expansion of a value v:bool is “if v
then true else false”; that is, v bool true false.

Idea: e unary model shows that if you η-expand, you literally get
one of the canonical forms. e free theorem is just an instance of
the more general thing we've shown (the fundamental theorem).

Structuring this in terms of η-expansion allows us to see clearly what
part we can prove with unary parametericity vs binary parametericity.
What's missing is

(*) f ≈ f bool true false

for some notion of equivalence ≈. We need relational parametricity for
this notion of equivalence and this part of the proof.

Once we know (*), we can compose it with (a) to get a proof that v ≈
true or v ≈ false.

Put another way, we're decomposing our eventual proof into two parts:
Everything we can show in unary LR and the bit we need binary LR to
show.

ink of the η-expansion as doing a fold over the type and producing
canonical values.

— Product types (some proofs in the unary model)

In System F, we can encode products, sums, existentials, etc.

Example: Products.

τ₁×τ₂ := ∀α.(τ₁ → τ₂ → α) → α.

(Aside: You can always think of these Church encodings as CPS.)

e constructor value “pair”; the intro form <–,–>; and the
projections π₁ and π₂ are defined as follows.

pair := λx₁.λx₂.<x₁,x₂>

<v₁,v₂> := Λα.λk.k v₁ v₂.



π₁ e := e τ₁ (λx.λy.x)
π₂ e := e τ₂ (λx.λy.y)

To show these do what we expect, write out the β-reduction property:

TS: π₁(<v₁,v₂>) ↦∗ v₁ (and similarly for π₂).

We have:
π₁ <v₁,v₂> = (Λα.λk.k v₁ v₂) τ₁ (λx.λy.x)

↦∗ (λx.λy.x) v₁ v₂
↦∗ v₁.

What could we hope to show using unary vs binary parametricity?

TS (binary):
If ⊢ f : τ₁ × τ₂
then f ≈ <v₁,v₂> for some v₁, v₂.

What we can show is a property of the η-expansion of f and evaluation:

TS (unary):
If ⊢ f : τ₁ × τ₂
then f (τ₁×τ₂) (pair) ↓ <v₁,v₂> for some v₁,v₂.

Pf:
By FTLR, f ∈ V[τ₁×τ₂].
Pick S := { <v₁,v₂> | v₁, v₂ ∈ CVal }.

(We probably don't need v₁ ∈ V[τ₁], v₂ ∈ V[τ₂]. ere
can't be junk in S by other arguments; eg, type
preservation up-front.)

TS:  f (τ₁×τ₂) (pair) ∈ E[α]α ↦ S.
(Which means that f (τ₁×τ₂) (pair) ↦* v ∈ S. One step remains:
Prove that pair is in the logical relation.)

TS: pair ∈ V[τ₁→τ₂→α]α ↦ S.
Let v₁ ∈ V[τ₁] and v₂ ∈ V[τ₂] be given.
TS: pair v₁ v₂ ∈ E[α]α ↦ S.

pair v₁ v₂ ↦∗ <v₁,v₂> ∈ S. (By construction of S.)

— Next time and HW

We'll discuss relational parametricity next Tuesday.

ere is homework due in two weeks. e first part follows. e second



part will come next Tuesday. (It will be to generalize the proof of
fundamental property to the relational model, in the style with v's
rather than λ's and Λ's in the definition of V[τ]ρ.)

HW:
Define:

τ₁ + τ₂ := ∀α.(τ₁ → α) → (τ₂ → α) → α).
inj_i := λx.bar{inj_i} x(i ∈ {1,2})
bar{inj_i} v := Λα.λk₁.λk₂.k_i v (i ∈ {1,2})
case_τ e of inj₁ x₁ ⇒ e₁ | inj₂ x₂ ⇒ e₂ := e τ (λx₁.e₁) (λx₂.e₂).

1. State and prove the β-reduction properties.

2. Use unary parametricity to show

If ⊢ f : τ₁+τ₂,
then f (τ₁+τ₂) inj₁ inj₂ ↓ inj_i(v) for some i, v.

— Asides from Dave:

• All positive (co)inductive types?

Derek mentioned that all products, sums, and positive inductive types
are definable in System F. Define µ and ν constructors (when the bound
type variables occur positively). State and prove the free theorems.

If necessary, find background info in Chapter 3 of Nax Mendler's
thesis (Mendler, 1988); Chapter 11 of Proofs and Types; and Derek.

• Surjective pairs?

Definition (Categorical products):
p₁ : A ← A×B → B : p₂ is a product of A and B if
for any Z and f : A ← Z → B : g,
there exists a unique <f,g> : Z → A×B satisfying
p₁ ∘ <f,g> = f and p₂ ∘ <f,g> = g.

We have the right β-reductions
π₁<v₁,v₂> ↓ v₁
π₂<v₁,v₂> ↓ v₂

because (we chose the right definition for τ₁×τ₂ and) our dynamic
semantics includes β-reductions. We do not have the η-expansion

v ↓ <π₁v,π₂v>



because our semantics excludes η-expansions.

Surjective pairing *means* <π₁v,π₂v> = v; that is, categorical
products.

From a quick scan, the following paper seems to connect System F (not
CBV System F), categorical products, and βη-equality.

C. Barry Jay and Neil Ghani (1995). e virtues of etaexpansion.
Journal of Functional Programming, 5, pp 135–154
doi:10.1017/S0956796800001301


