Goal: Prove termination for CBV System F using unary logical
relations.

We're not proving strong normalization (ie, every reduction sequence
is finite). Girard proved SN for full p(n?)-reduction.

— Remarks

Next Tuesday, 10:00-noon in E1.4 024. No class next Thursday.

Forgot to mention last time: We'll use operational semantics as a
unifying framework for all the things we review (eg, term models don't
come up in Reynolds' paper on parametricity but they do here).

Pitts developed this approach.

— Call-by-value System F

Call-by-value System F.

Types o, Tu=a|c— T|Vot
Terms ex=x|Axe|e e, |Aae|ec
Values v =X | Ax.e | Aoe

No base types: Many typical base types (N, L, 1, 2, etc) are
definable.

Useful sets:
CTyp :={ o | ftv(c) = @ } (closed types)

CTerm :={ e | fv(e) = @ } (closed terms may have free type variables)
CVal :={v | fv(v) = @} (closed values)

Static Semantics

Type Ctxts A = - | A,
Term CtxtsI" ::= - | T, xiT
Judgement: ATHe:T

We won't worry about well-formedness in our rules. We'll maintain the
invariant that ftv(I',e,t) € A; fv(e) € dom(I).

The typing rules are all standard.

xt €T

AT Hx:t

AT, xoke: T

A;THAXe:0 — 1

AN;THe :o—1
AN;THe,:0

AT Hejey:t

Ao;T'He:t

A; T = Aae : Vot

AT He:Vort
ftv(o) € A

A;THeo:t[o/a]
Dynamic semantics

Derek used one judgement e — e'. Deepak and Viktor pointed out that
presentations supporting a simpler metatheory exist. Derek argued
they're equivalent. Such details matter most when you formalize your
metatheory in a proof assistant. Derek suggested reducing
non-determinism by with two judgements e +— e' and e —_r e'. I left the
r's in place here, but ignore them when you read the sequel.

Eval Ctxt K:=+|Ke|vK|Ko
Judgement:
er—e'

e— re'

er— re'

Kle] — K[e']

(Ax.e)v —_r e[v/x]
(Aa.e)o — _re[o/a]
Definition:
We write e | v if e evaluates to v in some number of steps (e
% V).

— Direct proofs of termination fail

Goal:
Ife:r,
theniv.e | v.

A direct proof by induction on the derivation won't work.
« We would obviously need to generalize to open terms.

« Even strengthened, induction on D :: A; T' - e : t fails (as follows)
in the case for applications.

Case e =e; e,.

e :0—1

e,: o

Feiey:T

ByIH, e, | viande, | v,.

(Imagine we know v, = Ax.e'.)

We have e; e, —* (Ax.e') v, — e'[vy/x].

Problem: We have no reason to believe e'[v,/x] |.

Basic idea: Strengthen the IH in a more involved way, via (unary)
logical relations (aka logical predicates).

— Unary logical relations

We begin by writing down the logical relation without the exciting bit
that Girard added (candidates of reducibility).

Informally: We're going to define type-indexed families of sets E[7]
and V[t] with (problem-specific) conditions baked in: We want E to
pick out those terms that evaluate to values. Put another way, we're
going to say how to interpret a type t as a set of terms E[t] that
inhabit that type and as a set of values V[t] that inhabit that type.

The rough idea (we'll have to improve it later):

CTerm 2 E[t]:={e|3v.e | vAaveEV[r]}
CVal2 V[o—rt]:={Ax.e|Vv € V[o]. e[v/x] € E[1] }
V[va.t] := { Ao.e | Vo. e[o/a] € E[t[o/a]] }

Some notes, before defining V[t] at the other types:

« Informally, we've baked the step “e'[v,/x] |” missing from our proof
into the logical relation.

« This isn't a simple recursive definition of E and V: Induction on
types is necessary for the thing to well-founded. In V[c—t], we
quantify over V[c]; that's ok since ¢ is smaller than c—1. (We
couldn't define V using “just” V in a negative position.) More
concretely, if we erase the types to define E and V and we assert that
such a construct exists, then we can prove that the untyped lambda
calculus is strongly normalizing.

For the Va.t case, we can't use the obvious
V[vo.t] := { Ao.e | Vo. e[c/a] € E[t[oc/a]] }

since o might be Va.t, screwing up our induction on types. (This
definition would work with a predicative language.)

This motivates Girard's “candidates of reducibility” trick: Abstract
types can represent “arbitrary” sets of values (or terms, depending on
the setup) where those sets are drawn from some class Cand of
candidates. As with V[-] and E[-], we get to impose problem-specific
restrictions on Cand.

For our purposes, we can get by with

Cand := Sub(CVal).

Informally, a candidate set is any set of closed values. Why do we
expect that to work? First, note that in Aa.e, the subexpression e

can't analyze o; for example, there's no typecase in System F. Second,
we're modelling types as sets of values. Thus we should wind up with a
candidate set being a set of values (with no conditions attached).

We'll use
V[va.t]p :={ Ao.e | Vo. VS € Cand. e[c/a] € E[t](p, a — S) }
Some notes:

« Informally, o is the syntactic point of o and we've added S, the
semantic point of .

« We're using p : Tyvar — Cand to account for the free type variables
in T when writing V[t]. We denote the extension of p by (p, a — S).

« We're quatifying over all terms of form Ao.e: We don't require
them to be well-typed or even to be closed wrt type variables.

The whole point of such models is to separate ourselves from such
syntactic considerations.

« The thing is trivially well-founded: 7 is clearly smaller than Vo.t.

« We will use p in the interpretation of type variables. The other cases simply
pass p along.

The full definition:
CTerm 2 E[t]p:={e|3v.e | vaveEV[t]p}
CVal 2 V[a]p := p(a)
V[o—1]p:={Ax.e | Vv € V[o]p. e[v/x] € E[t]p }
V[va.t]p := { Aa.e | Vo. VS € Cand. e[c/a] € E[t](p, x — S) }
— Fundamental Theorem

We'll want to state a theorem about open terms along the lines:

IfA;THe:T,
then e € E[1]---.

but our logical relation is defined over closed terms. We'll use a
standard trick: Quantify over all “closing substitutions” of the
context. (Think of e as a function from its context to its result

type.)

Define
D[A] :={p € Tyvar — Cand | A € dom(p) }
G[T]p :={y € Var — CVal | v(x:1) € I. y(x) € V[t]p }

Informally, D[A] picks out those substitutions p supporting A (all
candidates are interesting) and G[I']p picks out those substitutions y
supporting I with “interesting” values.

Aside: Read “V[t]p” as “the value relation at t interpreted by p”.
Theorem (fundamental theorem of the logical relation):

IfA;THe:m,
then vp € D[A]. vy € G[I']p. ye € E[1]p.

Informally, the theorem says that the model respects the syntax of the
language. Once we generalize to relational parametricity, the
fundamental theorem is sometimes called the abstraction theorem
(following Reynolds).

Corollary:
Ife:m,
thene | v.

Proof: By the fundamental theorem with p, y the identity
substitutions. We have ye = e € E[t]p = e | v. Q.E.D.

As Derek worked through the proof, he “discovered” some necessary
lemmas as well as a bug. That's how these things go. I leave things as
Derek presented them. (Exercise: Fix the buggy proof.)

Proof of the fundamental theorem:
By induction on the derivation D :: A; T e : 1.

Case
xt €T
D= —
AN;THx:tT

Let p € D[A] and y € G[I']p be given.

(Aside: From now on, we implicitly introduce parameters when
proving Vx.¢ and implicitly close with “since x was arbitrary,

vx.¢”)

TS: yx € E[1]p.
(Aside: TS = to show).

By definition of G[I']p, we know yx € V[t]p C E[1]p.

(Aside: We implicitly used the “coincidence lemma” V[t]p C
E[t]p. It's too trivial to state in this setting.)

(Aside: There is an important lemma:

If ftv(t) © A
and p € D[A],
then V[t]p € Cand.

It's trivial in this setting. In Girard's proof, Cand has
various closure properties that make this lemma nontrivial.)

Case
AN;T,xokFe:T
D= —
A THAxe: 00— 1
TS: y(Ax.e) = Ax.(ye) € E[c—1]p.

(Aside: We implicitly assume, without loss of generality, that
x # dom(y).)

(Aside: We implicitly use substitiution lemmas.)
By coincidence, it suffices to show

Ax.(ye) € V[o—1]p
< (Definition of V[c—T1].)

vv € V[o]p. (ye)[v/x] € E[t]p.

Sety' := (Y, x — v). Then y' € G[T, x:0]p.
By IH, (ye)[v/x] = y'e € E[t]p.

Case
AN;THe :o—1
A;THe,:0
D= —
AN;THeje,: T

By IH, ye, € E[c — t]p and ve, € E[c]p.
TS: y(es) = (yer)(yes) € E[clp.

Then we may choose v, and v, satisfying

(ver) | vi € V[o—1]p
(vez) | v2€ V[o]p

By the definition of V[c— 1], we know
Vi = >\.XC

such that e[v,/x] € E[t]p.
The case is done once we apply the following lemma.

(Another trivial here lemma that isn't trivial in Girard's setting.
Lemma (Closure under expansion):

Ife € E[t]p
and e' o+« e,
then e' € E[t]p.

Proof: Trivial.)

Case
Ao T'He:t
D: —_
A; T = Aae : Vot

TS: y(Aa.e) = Aa.(ye) € E[Va.t]p
<= y(Aa.e) € V[Va.1]p.

Let o, S € Cand be given.
TS: (ye)[o/a] € E[t](p, &« — S).

Set p':= (p,a — S) € D[A,a].

We have I' € G[I']p < (Because ftv(I') € A.) G[I']p".
(Ie, by assumption I' does not refer to c.)

By the IH, we have ye € E[1]p".

To fix the proof, note that types shouldn't matter.
The difference between ye and (ye)[c/a] shouldn't matter.
We can probably fix this proof by generalizing it:

IfA;THe:T,
then vp € D[A]. vy € G[T']p. ¥d : A — Type. d(ye) € E[t]p.

In this case, we also extend d:
&' := (5, a — o).
The IH gives us
d'(ye) = (dye)[o/a] € E[1]p".

Exercise: Go back and add the §'s in to this proof. The only hard case
should be the following.

Case
AT He:Vort
ftv(o) C A
Z; I'Heo:t[o/a]
Suppose we have p € D[A], y € G[I']p, and 6 : A — Type.
By IH, dye € E[Vo.T]p.
Thus, dye | Ao.e' € V[Va.T]p.
TS: (8ye)(do) € E[t[o/a]]p.
(dye)(do) >+ (Aa.e')(do) — e'[do/a].
By closure under expansion, it suffices to show
e'[do/a] € E[t[c/a]]p.
By the definition of V[Va.t]p., we want to pick some S € Cand

such that e'[dc/a] € E[t](p,a—S) and then (cliff-hanger)
relate E[t](p,a—S) and E[t[c/a]]p.

[--more next time--Idea: Pick S = V[c]p and show the two sets equal by
induction on types.]

Informally, the logical relation lets us pick any S we want. For the
proof to go through, we need to be able to pick S to be the
interpretation of the syntactic type. e, that the interpretation of
V[o]p is in Cand. In other settings, its not trivial.

For next time: Understand this proof. It'll have to feel like
boilerplate in the future: Every model adds “interesting” proof
obligations.

