
Goal: Prove termination for CBV System F using unary logical
relations.

We're not proving strong normalization (ie, every reduction sequence
is finite). Girard proved SN for full β(η?)-reduction.

— Remarks

Next Tuesday, 10:00-noon in E1.4 024. No class next ursday.

Forgot to mention last time: We'll use operational semantics as a
unifying framework for all the things we review (eg, term models don't
come up in Reynolds' paper on parametricity but they do here).
Pis developed this approach.

— Call-by-value System F

Call-by-value System F.

Types σ, τ ::= α | σ → τ | ∀α.τ
Terms e ::= x | λx.e | e₁ e₂ | Λα.e | e σ
Values v ::= x | λx.e | Λα.e

No base types: Many typical base types (ℕ, ⊥, 1, 2, etc) are
definable.

Useful sets:

CTyp := { σ | v(σ) = ∅ } (closed types)
CTerm := { e | fv(e) = ∅ } (closed terms may have free type variables)
CVal := { v | fv(v) = ∅ } (closed values)

Static Semantics

Type CtxtsΔ ::= · | Δ,α
Term CtxtsΓ ::= · | Γ, x:τ

Judgement: Δ; Γ ⊢ e : τ

We won't worry about well-formedness in our rules. We'll maintain the
invariant that v(Γ,e,τ) ⊆ Δ; fv(e) ⊆ dom(Γ).

e typing rules are all standard.



x:τ ∈ Γ
—
Δ; Γ ⊢ x : τ

Δ; Γ, x:σ ⊢ e : τ
—
Δ; Γ ⊢ λx.e : σ → τ

Δ; Γ ⊢ e₁ : σ → τ
Δ; Γ ⊢ e₂ : σ
—
Δ; Γ ⊢ e₁ e₂ : τ

Δ, α; Γ ⊢ e : τ
—
Δ; Γ ⊢ Λα.e : ∀α.τ

Δ, Γ ⊢ e : ∀α.τ
v(σ) ⊆ Δ
—
Δ; Γ ⊢ e σ : τ[σ/α]

Dynamic semantics

Derek used one judgement e ↦ e'. Deepak and Viktor pointed out that
presentations supporting a simpler metatheory exist. Derek argued
they're equivalent. Such details maer most when you formalize your
metatheory in a proof assistant. Derek suggested reducing
non-determinism by with two judgements e ↦ e' and e ↦_r e'. I le the
r's in place here, but ignore them when you read the sequel.

Eval Ctxt K ::= • | K e | v K | K σ

Judgement:
e ↦ e'
e ↦_r e'

e ↦_r e'
—



K[e] ↦ K[e']

—
(λx.e)v ↦_r e[v/x]

—
(Λα.e)σ ↦_r e[σ/α]

Definition:
We write e ↓ v if e evaluates to v in some number of steps (e
↦∗ v).

— Direct proofs of termination fail

Goal:
If ⊢ e : τ,
then ∃v. e ↓ v.

A direct proof by induction on the derivation won't work.

• We would obviously need to generalize to open terms.

• Even strengthened, induction on D :: Δ; Γ ⊢ e : τ fails (as follows)
in the case for applications.

Case e = e₁ e₂.

⊢ e₁ : σ → τ
⊢ e₂ : σ
—
⊢ e₁ e₂ : τ

By IH, e₁ ↓ v₁ and e₂ ↓ v₂.
(Imagine we know v₁ = λx.e'.)
We have e₁ e₂ ↦* (λx.e') v₂ ↦ e'[v₂/x].

Problem: We have no reason to believe e'[v₂/x] ↓.

Basic idea: Strengthen the IH in a more involved way, via (unary)
logical relations (aka logical predicates).

— Unary logical relations



We begin by writing down the logical relation without the exciting bit
that Girard added (candidates of reducibility).

Informally: We're going to define type-indexed families of sets E[τ]
and V[τ] with (problem-specific) conditions baked in: We want E to
pick out those terms that evaluate to values. Put another way, we're
going to say how to interpret a type τ as a set of terms E[τ] that
inhabit that type and as a set of values V[τ] that inhabit that type.

e rough idea (we'll have to improve it later):

CTerm ⊇ E[τ] := { e | ∃v. e ↓ v ∧ v ∈ V[τ] }
CVal ⊇ V[σ→τ] := { λx.e | ∀v ∈ V[σ]. e[v/x] ∈ E[τ] }

V[∀α.τ] := { Λα.e | ∀σ. e[σ/α] ∈ E[τ[σ/α]] }

Some notes, before defining V[τ] at the other types:

• Informally, we've baked the step “e'[v₂/x] ↓” missing from our proof
into the logical relation.

• is isn't a simple recursive definition of E and V: Induction on
types is necessary for the thing to well-founded. In V[σ→τ], we
quantify over V[σ]; that's ok since σ is smaller than σ→τ. (We
couldn't define V using “just” V in a negative position.) More
concretely, if we erase the types to define E and V and we assert that
such a construct exists, then we can prove that the untyped lambda
calculus is strongly normalizing.

For the ∀α.τ case, we can't use the obvious

V[∀α.τ] := { Λα.e | ∀σ. e[σ/α] ∈ E[τ[σ/α]] }

since σ might be ∀α.τ, screwing up our induction on types. (is
definition would work with a predicative language.)

is motivates Girard's “candidates of reducibility” trick: Abstract
types can represent “arbitrary” sets of values (or terms, depending on
the setup) where those sets are drawn from some class Cand of
candidates. As with V[–] and E[–], we get to impose problem-specific
restrictions on Cand.

For our purposes, we can get by with



Cand := Sub(CVal).

Informally, a candidate set is any set of closed values. Why do we
expect that to work? First, note that in Λα.e, the subexpression e
can't analyze α; for example, there's no typecase in System F. Second,
we're modelling types as sets of values. us we should wind up with a
candidate set being a set of values (with no conditions aached).

We'll use

V[∀α.τ]ρ := { Λα.e | ∀σ. ∀S ∈ Cand. e[σ/α] ∈ E[τ](ρ, α ↦ S) }

Some notes:

• Informally, σ is the syntactic point of α and we've added S, the
semantic point of α.

• We're using ρ : Tyvar → Cand to account for the free type variables
in τ when writing V[τ]. We denote the extension of ρ by (ρ, α ↦ S).

• We're quatifying over all terms of form Λα.e: We don't require
them to be well-typed or even to be closed wrt type variables.
e whole point of such models is to separate ourselves from such
syntactic considerations.

• e thing is trivially well-founded: τ is clearly smaller than ∀α.τ.

• We will use ρ in the interpretation of type variables. e other cases simply
pass ρ along.

e full definition:

CTerm ⊇ E[τ]ρ := { e | ∃v. e ↓ v ∧ v ∈ V[τ]ρ }

CVal ⊇ V[α]ρ := ρ(α)
V[σ→τ]ρ := { λx.e | ∀v ∈ V[σ]ρ. e[v/x] ∈ E[τ]ρ }
V[∀α.τ]ρ := { Λα.e | ∀σ. ∀S ∈ Cand. e[σ/α] ∈ E[τ](ρ, α ↦ S) }

— Fundamental eorem

We'll want to state a theorem about open terms along the lines:

If Δ; Γ ⊢ e : τ,
then e ∈ E[τ]⋯.



but our logical relation is defined over closed terms. We'll use a
standard trick: antify over all “closing substitutions” of the
context. (ink of e as a function from its context to its result
type.)

Define
D[Δ] := { ρ ∈ Tyvar ⇀ Cand | Δ ⊆ dom(ρ) }
G[Γ]ρ := { γ ∈ Var ⇀ CVal | ∀(x:τ) ∈ Γ. γ(x) ∈ V[τ]ρ }

Informally, D[Δ] picks out those substitutions ρ supporting Δ (all
candidates are interesting) and G[Γ]ρ picks out those substitutions γ
supporting Γ with “interesting” values.

Aside: Read “V[τ]ρ” as “the value relation at τ interpreted by ρ”.

eorem (fundamental theorem of the logical relation):

If Δ; Γ ⊢ e : τ,
then ∀ρ ∈ D[Δ]. ∀γ ∈ G[Γ]ρ. γe ∈ E[τ]ρ.

Informally, the theorem says that the model respects the syntax of the
language. Once we generalize to relational parametricity, the
fundamental theorem is sometimes called the abstraction theorem
(following Reynolds).

Corollary:
If ⊢ e : τ,
then e ↓ v.

Proof: By the fundamental theorem with ρ, γ the identity
substitutions. We have γe = e ∈ E[τ]ρ ⇒ e ↓ v. Q.E.D.

As Derek worked through the proof, he “discovered” some necessary
lemmas as well as a bug. at's how these things go. I leave things as
Derek presented them. (Exercise: Fix the buggy proof.)

Proof of the fundamental theorem:
By induction on the derivation D :: Δ; Γ ⊢ e : τ.

Case
x:τ ∈ Γ

D = —
Δ; Γ ⊢ x : τ



Let ρ ∈ D[Δ] and γ ∈ G[Γ]ρ be given.

(Aside: From now on, we implicitly introduce parameters when
proving ∀x.φ and implicitly close with “since x was arbitrary,
∀x.φ”.)

TS: γx ∈ E[τ]ρ.
(Aside: TS = to show).

By definition of G[Γ]ρ, we know γx ∈ V[τ]ρ ⊆ E[τ]ρ.

(Aside: We implicitly used the “coincidence lemma” V[τ]ρ ⊆
E[τ]ρ. It's too trivial to state in this seing.)

(Aside: ere is an important lemma:

If v(τ) ⊆ Δ
and ρ ∈ D[Δ],
then V[τ]ρ ∈ Cand.

It's trivial in this seing. In Girard's proof, Cand has
various closure properties that make this lemma nontrivial.)

Case
Δ; Γ, x:σ ⊢ e : τ

D = —
Δ; Γ ⊢ λx.e : σ → τ

TS: γ(λx.e) = λx.(γe) ∈ E[σ→τ]ρ.

(Aside: We implicitly assume, without loss of generality, that
x # dom(γ).)

(Aside: We implicitly use substitiution lemmas.)

By coincidence, it suffices to show

λx.(γe) ∈ V[σ→τ]ρ

⇔ (Definition of V[σ→τ].)

∀v ∈ V[σ]ρ. (γe)[v/x] ∈ E[τ]ρ.



Set γ' := (γ, x ↦ v). en γ' ∈ G[Γ, x:σ]ρ.
By IH, (γe)[v/x] = γ'e ∈ E[τ]ρ.

Case
Δ; Γ ⊢ e₁ : σ → τ
Δ; Γ ⊢ e₂ : σ

D = —
Δ; Γ ⊢ e₁ e₂ : τ

By IH, γe₁ ∈ E[σ → τ]ρ and γe₂ ∈ E[σ]ρ.
TS: γ(e₁ e₂) = (γe₁)(γe₂) ∈ E[τ]ρ.

en we may choose v₁ and v₂ satisfying

(γe₁) ↓ v₁ ∈ V[σ→τ]ρ
(γe₂) ↓ v₂ ∈ V[σ]ρ

By the definition of V[σ→τ], we know

v₁ = λx.e

such that e[v₂/x] ∈ E[τ]ρ.
e case is done once we apply the following lemma.

(Another trivial here lemma that isn't trivial in Girard's seing.

Lemma (Closure under expansion):

If e ∈ E[τ]ρ
and e' ↦∗ e,
then e' ∈ E[τ]ρ.

Proof: Trivial.)

Case
Δ, α; Γ ⊢ e : τ

D = —
Δ; Γ ⊢ Λα.e : ∀α.τ

TS: γ(Λα.e) = Λα.(γe) ∈ E[∀α.τ]ρ
⇐ γ(Λα.e) ∈ V[∀α.τ]ρ.

Let σ, S ∈ Cand be given.
TS: (γe)[σ/α] ∈ E[τ](ρ, α ↦ S).



Set ρ' := (ρ,α ↦ S) ∈ D[Δ,α].
We have Γ ∈ G[Γ]ρ ⇔ (Because v(Γ) ⊆ Δ.) G[Γ]ρ'.
(Ie, by assumption Γ does not refer to α.)
By the IH, we have γe ∈ E[τ]ρ'.

To fix the proof, note that types shouldn't maer.
e difference between γe and (γe)[σ/α] shouldn't maer.
We can probably fix this proof by generalizing it:

If Δ; Γ ⊢ e : τ,
then ∀ρ ∈ D[Δ]. ∀γ ∈ G[Γ]ρ. ∀δ : Δ ⇀ Type. δ(γe) ∈ E[τ]ρ.

In this case, we also extend δ:
δ' := (δ, α ↦ σ).

e IH gives us
δ'(γe) = (δγe)[σ/α] ∈ E[τ]ρ'.

Exercise: Go back and add the δ's in to this proof. e only hard case
should be the following.

Case
Δ, Γ ⊢ e : ∀α.τ
v(σ) ⊆ Δ

D= —
Δ; Γ ⊢ e σ : τ[σ/α]

Suppose we have ρ ∈ D[Δ], γ ∈ G[Γ]ρ, and δ : Δ ⇀ Type.

By IH, δγe ∈ E[∀α.τ]ρ.

us, δγe ↓ Λα.e' ∈ V[∀α.τ]ρ.

TS: (δγe)(δσ) ∈ E[τ[σ/α]]ρ.

(δγe)(δσ) ↦∗ (Λα.e')(δσ) ↦ e'[δσ/α].

By closure under expansion, it suffices to show

e'[δσ/α] ∈ E[τ[σ/α]]ρ.

By the definition of V[∀α.τ]ρ., we want to pick some S ∈ Cand
such that e'[δσ/α] ∈ E[τ](ρ,α↦S) and then (cliff-hanger)
relate E[τ](ρ,α↦S) and E[τ[σ/α]]ρ.



[⋯more next time⋯Idea: Pick S = V[σ]ρ and show the two sets equal by
induction on types.]

Informally, the logical relation lets us pick any S we want. For the
proof to go through, we need to be able to pick S to be the
interpretation of the syntactic type. Ie, that the interpretation of
V[σ]ρ is in Cand. In other seings, its not trivial.

For next time: Understand this proof. It'll have to feel like
boilerplate in the future: Every model adds “interesting” proof
obligations.


