Goal: Prove termination for CBV System F using unary logical relations.

We're not proving strong normalization (ie, every reduction sequence is finite). Girard proved SN for full $\beta(\eta$?)-reduction.

- Remarks

Next Tuesday, 10:00-noon in E1.4 024. No class next Thursday.

Forgot to mention last time: We'll use operational semantics as a unifying framework for all the things we review (eg, term models don't come up in Reynolds' paper on parametricity but they do here). Pitts developed this approach.

- Call-by-value System F

Call-by-value System F.

$$
\begin{array}{ll}
\text { Types } & \sigma, \tau::=\alpha|\sigma \rightarrow \tau| \forall \alpha . \tau \\
\text { Terms } & \mathrm{e}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{e}| \mathrm{e}_{1} \mathrm{e}_{2}|\Lambda \alpha . \mathrm{e}| \mathrm{e} \sigma \\
\text { Values } & \mathrm{v}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{e}| \Lambda \alpha . \mathrm{e}
\end{array}
$$

No base types: Many typical base types ($\mathbb{N}, \perp, 1,2$, etc) are definable.

Useful sets:

CTyp $:=\{\sigma \mid \mathrm{ftv}(\sigma)=\varnothing\}$ (closed types)
CTerm $:=\{\mathrm{e} \mid \mathrm{fv}(\mathrm{e})=\varnothing\}$ (closed terms may have free type variables)
CVal $:=\{\mathrm{v} \mid \mathrm{fv}(\mathrm{v})=\varnothing\}$ (closed values)

Static Semantics

$$
\begin{aligned}
& \text { Type Ctxts } \Delta::=\cdot \mid \Delta, \alpha \\
& \text { Term Ctxts } \Gamma::=\cdot \mid \Gamma, \mathrm{x}: \tau \\
& \text { Judgement: } \quad \Delta ; \Gamma \vdash \mathrm{e}: \tau
\end{aligned}
$$

We won't worry about well-formedness in our rules. We'll maintain the invariant that $\mathrm{ftv}(\Gamma, \mathrm{e}, \tau) \subseteq \Delta ; \mathrm{fv}(\mathrm{e}) \subseteq \operatorname{dom}(\Gamma)$.

The typing rules are all standard.

$$
\begin{aligned}
& \mathrm{x}: \tau \in \Gamma \\
& - \\
& \Delta ; \Gamma \vdash \mathrm{x}: \tau \\
& \Delta ; \Gamma, \mathrm{x}: \sigma \vdash \mathrm{e}: \tau \\
& - \\
& \Delta ; \Gamma \vdash \lambda \mathrm{x.e}: \sigma \rightarrow \tau \\
& \Delta ; \Gamma \vdash \mathrm{e}_{1}: \sigma \rightarrow \tau \\
& \Delta ; \Gamma \vdash \mathrm{e}_{2}: \sigma \\
& - \\
& \Delta ; \Gamma \vdash \mathrm{e}_{1} \mathrm{e}_{2}: \tau \\
& \Delta, \alpha ; \Gamma \vdash \mathrm{e}: \tau \\
& - \\
& \Delta ; \Gamma \vdash \Lambda \alpha . \mathrm{e}: \forall \alpha \cdot \tau \\
& \Delta, \Gamma \vdash \mathrm{e}: \forall \alpha \cdot \tau \\
& \mathrm{ftv}(\sigma) \subseteq \Delta \\
& - \\
& \Delta ; \Gamma \vdash \mathrm{e} \sigma: \tau[\sigma / \alpha]
\end{aligned}
$$

Dynamic semantics

Derek used one judgement e $\mapsto \mathrm{e}^{\prime}$. Deepak and Viktor pointed out that presentations supporting a simpler metatheory exist. Derek argued they're equivalent. Such details matter most when you formalize your metatheory in a proof assistant. Derek suggested reducing non-determinism by with two judgements $\mathrm{e} \mapsto \mathrm{e}$ ' and $\mathrm{e} \mapsto _\mathrm{r} \mathrm{e}^{\prime}$. I left the r 's in place here, but ignore them when you read the sequel.

```
Eval Ctxt K ::= •| K e|v K|K \sigma
```

Judgement:
$e \mapsto e^{\prime}$
e $\mapsto _$r e'
$\mathrm{e} \mapsto$ _r e^{\prime}

$$
\begin{aligned}
& \mathrm{K}[\mathrm{e}] \mapsto \mathrm{K}\left[\mathrm{e}^{\prime}\right] \\
& - \\
& (\lambda \mathrm{x} . \mathrm{e}) \mathrm{v} \mapsto{ }_{-} \mathrm{r} \mathrm{e}[\mathrm{v} / \mathrm{x}] \\
& - \\
& (\Lambda \alpha . \mathrm{e}) \sigma \mapsto _\mathrm{re}[\sigma / \alpha]
\end{aligned}
$$

Definition:
We write e $\downarrow \mathrm{v}$ if e evaluates to v in some number of steps (e $\mapsto *$ v).

- Direct proofs of termination fail

Goal:
If $\vdash \mathrm{e}: \tau$, then $\exists \mathrm{v}$. $\mathrm{e} \downarrow \mathrm{v}$.

A direct proof by induction on the derivation won't work.

- We would obviously need to generalize to open terms.
- Even strengthened, induction on $\mathrm{D}:: \Delta ; \Gamma \vdash \mathrm{e}: \tau$ fails (as follows) in the case for applications.

```
Case e \(=\mathrm{e}_{1} \mathrm{e}_{2}\).
\(\vdash \mathrm{e}_{1}: \sigma \rightarrow \tau\)
\(\vdash \mathrm{e}_{2}: \sigma\)
-
\(\vdash \mathrm{e}_{1} \mathrm{e}_{2}: \tau\)
By IH, \(\mathrm{e}_{1} \downarrow \mathrm{v}_{1}\) and \(\mathrm{e}_{2} \downarrow \mathrm{v}_{2}\).
(Imagine we know \(\mathrm{v}_{1}=\lambda\) x.e'.)
We have \(\mathrm{e}_{1} \mathrm{e}_{2} \mapsto^{*}\left(\lambda \mathrm{x} . \mathrm{e}^{\prime}\right) \mathrm{v}_{2} \mapsto \mathrm{e}^{\prime}\left[\mathrm{v}_{2} / \mathrm{x}\right]\).
```

Problem: We have no reason to believe $\mathrm{e}^{\prime}\left[\mathrm{v}_{2} / \mathrm{x}\right] \downarrow$.
Basic idea: Strengthen the IH in a more involved way, via (unary) logical relations (aka logical predicates).

- Unary logical relations

We begin by writing down the logical relation without the exciting bit that Girard added (candidates of reducibility).

Informally: We're going to define type-indexed families of sets $\mathrm{E}[\tau]$ and $\mathrm{V}[\tau]$ with (problem-specific) conditions baked in: We want E to pick out those terms that evaluate to values. Put another way, we're going to say how to interpret a type τ as a set of terms $\mathrm{E}[\tau]$ that inhabit that type and as a set of values $\mathrm{V}[\tau]$ that inhabit that type.

The rough idea (we'll have to improve it later):

$$
\begin{array}{ll}
\text { CTerm } \supseteq & \mathrm{E}[\tau]:=\{\mathrm{e} \mid \exists \mathrm{v} . \mathrm{e} \downarrow \mathrm{v} \wedge \mathrm{v} \in \mathrm{~V}[\tau]\} \\
\mathrm{CVal} \supseteq & \mathrm{~V}[\sigma \rightarrow \tau]:=\{\lambda \mathrm{x} . \mathrm{e} \mid \forall \mathrm{v} \in \mathrm{~V}[\sigma] . \mathrm{e}[\mathrm{v} / \mathrm{x}] \in \mathrm{E}[\tau]\} \\
& \mathrm{V}[\forall \alpha . \tau]:=\{\Lambda \alpha . \mathrm{e} \mid \forall \sigma . \mathrm{e}[\sigma / \alpha] \in \mathrm{E}[\tau[\sigma / \alpha]]\}
\end{array}
$$

Some notes, before defining $\mathrm{V}[\tau]$ at the other types:

- Informally, we've baked the step "e' $\left[\mathrm{v}_{2} / \mathrm{x}\right] \downarrow$ " missing from our proof into the logical relation.
-This isn't a simple recursive definition of E and V : Induction on types is necessary for the thing to well-founded. In $\mathrm{V}[\sigma \rightarrow \tau]$, we quantify over $\mathrm{V}[\sigma]$; that's ok since σ is smaller than $\sigma \rightarrow \tau$. (We couldn't define V using "just" V in a negative position.) More concretely, if we erase the types to define E and V and we assert that such a construct exists, then we can prove that the untyped lambda calculus is strongly normalizing.

For the $\forall \alpha . \tau$ case, we can't use the obvious

$$
\mathrm{V}[\forall \alpha . \tau]:=\{\Lambda \alpha . \mathrm{e} \mid \forall \sigma . \mathrm{e}[\sigma / \alpha] \in \mathrm{E}[\tau[\sigma / \alpha]]\}
$$

since σ might be $\forall \alpha . \tau$, screwing up our induction on types. (This definition would work with a predicative language.)

This motivates Girard's "candidates of reducibility" trick: Abstract types can represent "arbitrary" sets of values (or terms, depending on the setup) where those sets are drawn from some class Cand of candidates. As with V[-] and $\mathrm{E}[-]$, we get to impose problem-specific restrictions on Cand.

For our purposes, we can get by with
Cand := Sub(CVal).

Informally, a candidate set is any set of closed values. Why do we expect that to work? First, note that in $\Lambda \alpha . e$, the subexpression e can't analyze α; for example, there's no typecase in System F. Second, we're modelling types as sets of values. Thus we should wind up with a candidate set being a set of values (with no conditions attached).

We'll use

$$
\mathrm{V}[\forall \alpha . \tau] \rho:=\{\Lambda \alpha . \mathrm{e} \mid \forall \sigma . \forall \mathrm{S} \in \text { Cand. } \mathrm{e}[\sigma / \alpha] \in \mathrm{E}[\tau](\rho, \alpha \mapsto \mathrm{S})\}
$$

Some notes:

- Informally, σ is the syntactic point of α and we've added S, the semantic point of α.
- We're using $\rho:$ Tyvar \rightarrow Cand to account for the free type variables in τ when writing $V[\tau]$. We denote the extension of ρ by $(\rho, \alpha \mapsto S)$.
- We're quatifying over all terms of form $\Lambda \alpha$. .e: We don't require them to be well-typed or even to be closed wrt type variables.
The whole point of such models is to separate ourselves from such syntactic considerations.
- The thing is trivially well-founded: τ is clearly smaller than $\forall \alpha . \tau$.
- We will use ρ in the interpretation of type variables. The other cases simply pass ρ along.

The full definition:

$$
\begin{aligned}
& \text { CTerm } \supseteq \mathrm{E}[\tau] \rho:=\{\mathrm{e} \mid \exists \mathrm{v} . \mathrm{e} \downarrow \mathrm{v} \wedge \mathrm{v} \in \mathrm{~V}[\tau] \rho\} \\
& \mathrm{CVal} \supseteq \mathrm{~V}[\alpha] \rho:=\rho(\alpha) \\
& \mathrm{V}[\sigma \rightarrow \tau] \rho:=\{\lambda \mathrm{x} . \mathrm{e} \mid \forall \mathrm{v} \in \mathrm{~V}[\sigma] \rho . \mathrm{e}[\mathrm{v} / \mathrm{x}] \in \mathrm{E}[\tau] \rho\} \\
& \mathrm{V}[\forall \alpha . \tau] \rho:=\{\text { \人.e } \mid \forall \sigma . \forall \mathrm{S} \in \operatorname{Cand} \mathrm{e}[\sigma / \alpha] \in \mathrm{E}[\tau](\rho, \alpha \mapsto \mathrm{S})\}
\end{aligned}
$$

- Fundamental Theorem

We'll want to state a theorem about open terms along the lines:

$$
\begin{aligned}
& \text { If } \Delta ; \Gamma \vdash \mathrm{e}: \tau, \\
& \text { then } \mathrm{e} \in \mathrm{E}[\tau] \cdots
\end{aligned}
$$

but our logical relation is defined over closed terms. We'll use a standard trick: Quantify over all "closing substitutions" of the context. (Think of e as a function from its context to its result type.)

Define

$$
\begin{aligned}
& \mathrm{D}[\Delta]:=\{\rho \in \operatorname{Tyvar} \rightharpoonup \mathrm{Cand} \mid \Delta \subseteq \operatorname{dom}(\rho)\} \\
& \mathrm{G}[\Gamma] \rho:=\{\gamma \in \operatorname{Var} \rightharpoonup \operatorname{CVal} \mid \forall(\mathrm{x}: \tau) \in \Gamma \cdot \gamma(\mathrm{x}) \in \operatorname{V}[\tau] \rho\}
\end{aligned}
$$

Informally, $\mathrm{D}[\Delta]$ picks out those substitutions ρ supporting Δ (all candidates are interesting) and $G[\Gamma] \rho$ picks out those substitutions γ supporting Γ with "interesting" values.

Aside: Read " $\mathrm{V}[\tau] \rho$ " as "the value relation at τ interpreted by ρ ".
Theorem (fundamental theorem of the logical relation):

```
If }\Delta;\Gamma\vdash\textrm{e}:\tau\mathrm{ ,
then }\forall\rho\in\textrm{D}[\Delta].\forall\gamma\inG[\Gamma]\rho.\gammae\inE[\tau]\rho
```

Informally, the theorem says that the model respects the syntax of the language. Once we generalize to relational parametricity, the fundamental theorem is sometimes called the abstraction theorem (following Reynolds).

Corollary:
If $\vdash \mathrm{e}: \tau$, then $\mathrm{e} \downarrow \mathrm{v}$.

Proof: By the fundamental theorem with ρ, γ the identity substitutions. We have $\gamma \mathrm{e}=\mathrm{e} \in \mathrm{E}[\tau] \rho \Rightarrow \mathrm{e} \downarrow \mathrm{v}$. Q.E.D.

As Derek worked through the proof, he "discovered" some necessary lemmas as well as a bug. That's how these things go. I leave things as Derek presented them. (Exercise: Fix the buggy proof.)

Proof of the fundamental theorem:
By induction on the derivation $\mathrm{D}:: \Delta ; \Gamma \vdash \mathrm{e}: \tau$.

Case

$$
\mathrm{D}=\frac{\mathrm{x}: \tau \in \Gamma}{-} \begin{aligned}
& \Delta ; \Gamma \vdash \mathrm{x}: \tau
\end{aligned}
$$

Let $\rho \in \mathrm{D}[\Delta]$ and $\gamma \in \mathrm{G}[\Gamma] \rho$ be given.
(Aside: From now on, we implicitly introduce parameters when proving $\forall \mathrm{x} . \varphi$ and implicitly close with "since x was arbitrary, $\forall x . \varphi "$.)

TS: $\gamma x \in E[\tau] \rho$.
(Aside: TS = to show).
By definition of $\mathrm{G}[\Gamma] \rho$, we know $\gamma \mathrm{x} \in \mathrm{V}[\tau] \rho \subseteq \mathrm{E}[\tau] \rho$.
(Aside: We implicitly used the "coincidence lemma" $\mathrm{V}[\tau] \rho \subseteq$ $\mathrm{E}[\tau] \rho$. It's too trivial to state in this setting.)
(Aside: There is an important lemma:

$$
\begin{aligned}
& \text { If } \operatorname{ftv}(\tau) \subseteq \Delta \\
& \text { and } \rho \in \mathrm{D}[\Delta] \\
& \text { then } \mathrm{V}[\tau] \rho \in \mathrm{Cand} .
\end{aligned}
$$

It's trivial in this setting. In Girard's proof, Cand has various closure properties that make this lemma nontrivial.)

Case

$$
\mathrm{D}=\begin{aligned}
& \Delta ; \Gamma, \mathrm{x}: \sigma \vdash \mathrm{e}: \tau \\
& \Delta ; \Gamma \vdash \lambda \mathrm{x} . \mathrm{e}: \sigma \longrightarrow \tau
\end{aligned}
$$

TS: $\gamma(\lambda \mathrm{x} . \mathrm{e})=\lambda \mathrm{x} .(\gamma \mathrm{e}) \in \mathrm{E}[\sigma \longrightarrow \tau] \rho$.
(Aside: We implicitly assume, without loss of generality, that x \# dom(γ).)
(Aside: We implicitly use substitiution lemmas.)
By coincidence, it suffices to show

$$
\lambda \mathrm{x} .(\mathrm{\gamma e}) \in \mathrm{V}[\sigma \longrightarrow \tau] \rho
$$

$\Leftrightarrow($ Definition of $\mathrm{V}[\sigma \longrightarrow \tau]$.

$$
\forall \mathrm{v} \in \mathrm{~V}[\sigma] \rho .(\mathrm{\gamma e})[\mathrm{v} / \mathrm{x}] \in \mathrm{E}[\tau] \rho .
$$

Set $\gamma^{\prime}:=(\gamma, x \mapsto v)$. Then $\gamma^{\prime} \in G[\Gamma, x: \sigma] \rho$.
By IH, ($\gamma \mathrm{e})[\mathrm{v} / \mathrm{x}]=\gamma^{\prime} \mathrm{e} \in \mathrm{E}[\tau] \rho$.
Case

$$
\begin{aligned}
& \Delta ; \Gamma \vdash \mathrm{e}_{1}: \sigma \longrightarrow \tau \\
& \Delta ; \Gamma \vdash \mathrm{e}_{2}: \sigma
\end{aligned}
$$

$\mathrm{D}=-$

$$
\Delta ; \Gamma \vdash \mathrm{e}_{1} \mathrm{e}_{2}: \tau
$$

By IH, $\gamma \mathrm{e}_{1} \in \mathrm{E}[\sigma \rightarrow \tau] \rho$ and $\mathrm{e}_{2} \in \mathrm{E}[\sigma] \rho$.
TS: $\gamma\left(\mathrm{e}_{1} \mathrm{e}_{2}\right)=\left(\gamma \mathrm{e}_{1}\right)\left(\gamma \mathrm{e}_{2}\right) \in \mathrm{E}[\tau] \rho$.
Then we may choose v_{1} and v_{2} satisfying

$$
\begin{aligned}
& \left(\mathrm{\gamma e}_{1}\right) \downarrow \mathrm{v}_{1} \in \mathrm{~V}[\sigma \longrightarrow \tau] \rho \\
& \left(\mathrm{\gamma e}_{2}\right) \downarrow \mathrm{v}_{2} \in \mathrm{~V}[\sigma] \rho
\end{aligned}
$$

By the definition of $\mathrm{V}[\sigma \longrightarrow \tau]$, we know

$$
\mathrm{v}_{1}=\lambda \mathrm{x} . \mathrm{e}
$$

such that $\mathrm{e}\left[\mathrm{v}_{2} / \mathrm{x}\right] \in \mathrm{E}[\tau] \rho$.
The case is done once we apply the following lemma.
(Another trivial here lemma that isn't trivial in Girard's setting.

Lemma (Closure under expansion):

$$
\begin{aligned}
& \text { If e } \in \mathrm{E}[\tau] \rho \\
& \text { and } \mathrm{e}^{\prime} \mapsto * \mathrm{e}, \\
& \text { then } \mathrm{e}^{\prime} \in \mathrm{E}[\tau] \rho . \\
& \text { Proof: Trivial.) }
\end{aligned}
$$

Case
$\Delta, \alpha ; \Gamma \vdash \mathrm{e}: \tau$
$\mathrm{D}=-$
$\Delta ; \Gamma \vdash \Lambda \alpha . \mathrm{e}: \forall \alpha . \tau$
TS: $\gamma(\Lambda \alpha . e)=\Lambda \alpha .(\gamma e) \in E[\forall \alpha . \tau] \rho$
$\Longleftarrow \gamma(\Lambda \alpha . e) \in V[\forall \alpha . \tau] \rho$.
Let $\sigma, S \in$ Cand be given.
TS: $(\gamma \mathrm{e})[\sigma / \alpha] \in \mathrm{E}[\tau](\rho, \alpha \mapsto \mathrm{S})$.

Set $\rho^{\prime}:=(\rho, \alpha \mapsto S) \in D[\Delta, \alpha]$.
We have $\Gamma \in G[\Gamma] \rho \Leftrightarrow\left(\right.$ Because $\mathrm{ftv}(\Gamma) \subseteq \Delta$.) $\mathrm{G}[\Gamma] \rho^{\prime}$.
(Ie, by assumption Γ does not refer to α.)
By the IH , we have 子e $\in \mathrm{E}[\tau] \rho^{\prime}$.

To fix the proof, note that types shouldn't matter.
The difference between ye and ($\gamma \mathrm{e}$) $[\sigma / \alpha]$ shouldn't matter.
We can probably fix this proof by generalizing it:

$$
\begin{aligned}
& \text { If } \Delta \text {; } \Gamma \vdash \mathrm{e}: \tau \text {, } \\
& \text { then } \forall \rho \in \mathrm{D}[\Delta] . \forall \gamma \in \mathrm{G}[\Gamma] \rho . \forall \delta: \Delta \longrightarrow \text { Type. } \delta(\gamma \mathrm{e}) \in \mathrm{E}[\tau] \rho .
\end{aligned}
$$

In this case, we also extend δ :

$$
\delta^{\prime}:=(\delta, \alpha \mapsto \sigma) .
$$

The IH gives us

$$
\delta^{\prime}(\gamma \mathrm{e})=(\delta \gamma e)[\sigma / \alpha] \in \mathrm{E}[\tau] \rho^{\prime} .
$$

Exercise: Go back and add the δ 's in to this proof. The only hard case should be the following.

Case

$$
\mathrm{D}=\begin{aligned}
& \Delta, \Gamma \vdash \mathrm{e}: \forall \alpha . \tau \\
& \mathrm{ftv}(\sigma) \subseteq \Delta \\
& - \\
& \Delta ; \Gamma \vdash \mathrm{e} \sigma: \tau[\sigma / \alpha]
\end{aligned}
$$

Suppose we have $\rho \in \mathrm{D}[\Delta], \gamma \in \mathrm{G}[\Gamma] \rho$, and $\delta: \Delta \longrightarrow$ Type.
By $\mathrm{IH}, \delta \gamma е \in \mathrm{E}[\forall \alpha . \tau] \rho$.
Thus, $\delta \gamma \mathrm{e} \downarrow \Lambda \alpha . \mathrm{e}^{\prime} \in \mathrm{V}[\forall \alpha . \tau] \rho$.
TS: $(\delta \gamma \mathrm{e})(\delta \sigma) \in \mathrm{E}[\tau[\sigma / \alpha]] \rho$.
$(\delta \gamma e)(\delta \sigma) \mapsto *\left(\Lambda \alpha . e^{\prime}\right)(\delta \sigma) \mapsto \mathrm{e}^{\prime}[\delta \sigma / \alpha]$.
By closure under expansion, it suffices to show

$$
\mathrm{e}^{\prime}[\delta \sigma / \alpha] \in \mathrm{E}[\tau[\sigma / \alpha]] \rho .
$$

By the definition of $\mathrm{V}[\forall \alpha . \tau] \rho$., we want to pick some $\mathrm{S} \in \mathrm{Cand}$ such that $\mathrm{e}^{\prime}[\delta \sigma / \alpha] \in \mathrm{E}[\tau](\rho, \alpha \mapsto S)$ and then (cliff-hanger) relate $\mathrm{E}[\tau](\rho, \alpha \mapsto \mathrm{S})$ and $\mathrm{E}[\tau[\sigma / \alpha]] \rho$.
[\cdots more next time \cdots Idea: Pick $\mathrm{S}=\mathrm{V}[\sigma] \rho$ and show the two sets equal by induction on types.]

Informally, the logical relation lets us pick any S we want. For the proof to go through, we need to be able to pick S to be the interpretation of the syntactic type. Ie, that the interpretation of $\mathrm{V}[\sigma] \rho$ is in Cand. In other settings, its not trivial.

For next time: Understand this proof. It'll have to feel like boilerplate in the future: Every model adds "interesting" proof obligations.

