— History

Strachey (1967 lecture notes) introduces the term “parametric” vs “ad
hoc” polymorphism. His canonical example of a parametric function is
map : Ya.Vp.(a — B) — list o« — list p.

(Aside: Derek is impressed that everyone cites Strachey for the one
paragraph in his lecture notes devoted to this idea.)

Strachey gives us a very intentional notion of parametricy: A
parametrically polymorphic function uses the same behavior (code) at
different types.

We'll be studying an extensional notion of parametricity.
The first published notion of extensional parametricity: Girard's thesis.

Girard's thesis (1972) and Reynolds (1974) introduced System F. Girard
cared about the proof theory of second order intuitionistic logic. He
introduced “Girard's method” (aka, “Girard's method of candidates of
reducibility”—see the cute paper Gallier (1992), introducing the
method and arguing that most variations on it don't matter) for
proving strong normalization of System F. That is, normalizations of
well-typed programs terminate (for fn-reduction). This both limits the
language's power (no nonterminating programs) and leads to very
interesting reasoning principles. Leads to “unary” parametricity, the
simplest model we might start with. (Aside: One way to think about a
model of a language is as a very strong induction hypothesis. Compare
to denotational semantics.)

Girard's basic idea: Abstract types represent sets that *do not™ have
to correspond to syntactic types in the language.

Example:
Ife: Voo
and fv(e) = @,
then contradiction.

With unary parametricity, we can *prove” that in System
F, there are no terms of type Va.o. (Instantiate o
with @. From the model, e € @. Contradiction.)

Aside: System F vs ML. System F is impredicative: Type
variables a can be instantiated with any type, even



polymorphic types.

Example:
Iff:vo.oo — o
then f »~ Ao Ax:o.x.

Using unary parametricity, we can prove this. (Boils
down to applying f to a singleton set. Again, sets in
the model do not have to correspond to syntactic

types.)

Aside: Using set-based parametricity, we have proven two
so-called “definability of types” results:

Va.ox ~ 0 (void)

Voo — o~ 1 (unit)

In fact, all such sums are definable in System F. We can't
prove the next such result without relational parametricity.

Voo = o — a~2 (bool)
(Where true and false are the two inhabitants.)

Claim:
true = Aa.Ax:oLAy:0nx
false = Ao Ax:a.Ay:ony
ifbe;e,~be;e,

Iff: Voo — a — «a,
then f is either true or false.

Failed proof: First, instantiate o to {v,,v.}. (f (v,)

(v2)) € {vy,v2}. So far, so good. But Maybe: {(3)(5) =

3 but f(3)(4) = 4. We need relational parametricity to
prove that can't happen.

What we want to show is that with two calls f(3)(5), f(2)(4),
we either get (3,2) or (5,4). We're relating two runs of the
program.

Aside (odd claim by Derek, IMO):
Utility of n-ary method an open question. Odd since an n-ary
relation is just a certain kind of unary relations. Not odd
since unary vs binary parametricity are different models: In



the unary case, Girard worked with sets of terms of the
language. In the binary cases, the model changes.

Reynold's paper (1983): Types, abstraction, and parametric
polymorphism. Intuition: Clients of an abstact type should be
*invariant™ under changes of representation of that type (ie, over
multiple runs).

Instead of instantiating o with a set of values, we
instantiate it with a relation describing the change in
representation of values. Eg, instantiate o with {(3,2),

(5.4)}.

Aside: Another definability of types result is that one can encode
existentials in System F (via CPS): Ja.t » Vf.(Va.t — ) — B.

Other applications of relational parametricity (beyond definability of
types):

Free theorems (Wadler, 1989). For more interesting polymorphic types
(than the identity), you know things that can be used in
optimizations. For example, if f : Voclist o — list o, then f can't
inspect the list's elements. It might permute, drop, or duplicate
elements. It's becoming clear that parametricity gives us properties
that are hard to formally state. The free theorem for this type:

Vg:c — 1. (map g) o (f[o]) = f[t] o (map g).

This is an extensional property of f: We're beginning to characterize
how f behaves. Such hoisting operations come up in optimizations.
Short-cut fusion relies on such equational reasoning, enabled by
parametricity. It's used in haskell implementations. It was proven
sound in (Johann, 2002).

The applications so far are of the form What do you know about all
things of a universal type? Derek's work: What do you know about some
things of an existential type?

Canonical paper for “representation independence”: (Mitchell, 1986).
ADTs and modules can be represented as terms of existential type
(Jo.t). We can use relational parametricity to prove that two
implementations of an ADT are contextually (or observationally)
equivalent.



« It's good to know that modularity mechanisms in a particular
language actually work. (Derek got started in this line of work
because ML lacked a representation independence theorem.) The proof
principle for existential types wind up being a kind of simulation
argument.

« It's useful in showing that some implementation of an ADT matches
the behavior of a reference implementation.

— Recent work

Earthly delights: Relational parametricity applied to langauges with
recursion, recursive types, mutable state (tons of work on idealized
algol, ML-style state studied “only” since the late 1990s), control
operators, concurrency.

Basic starting point: Logical relations. Often considered introduced
by (Tait, 1967), an inscrutable forerunner to Girard's thesis work.
Girard uses Tait's method to prove strong normalization for the
simply-typed A-calculus. (Tait and Girard considered only unary
logical relations.)

Basic idea: Build a model of the language defined by induction on the
type structure.

Problems that have been encountered:

« Recursion: Logical relations are not automatically “admissible” (a
domain theory term meaning they don't support fixed points). One thing
you can do to make the construction admissible is restrict the

relations involved to make things admissible. Another is

biorthogonality (Pitts-Stark 1998): Account for the context in which
terms are executed

« Recursive types: The problem with general recursive types. You try
to define equivalence at type po.t in terms of equivalence at that
type. Induction on types no longer works. Idea: Do induction on
something else. Step-indexing: Do induction on steps of computation.
(Appel-McAllestor, 2001) and Ahmed's thesis (2005).

« Mutable state: Another form of data abstraction (distinct from and
much more comman than abstract types): Local state. We want to reason
about local state the same way we can reason about abstract types. Key
idea: Kripke logical relations. A lot of work was done in the setting



of Idealized Algol. Parameterize the logical relation by a “possible
world” encoding invariants on local state.



