Modularity in Separation Logic

Scott Kilpatrick CPL Seminar 06 June 2011

Modularity

Separation (Logic)

VS.

Divide program into client and implementor, and reason locally

Implementor uses representation details; client does not

Divide heap into relevant and irrelevant, and reason locally

???

e.g. Sequential memory manager

Interface Specifications

```
\{ emp \} alloc \{ x \mapsto -, - \} [x] \{ x \mapsto -, - \} free \{ emp \} []
```

public

```
Resource Invariant: list(f) \stackrel{\text{def}}{\Leftrightarrow} (f = \text{nil} \land \text{emp}) \lor (\exists g.f \mapsto -, g * list(g))
```

Private Variables: f

Internal Implementations

$$\begin{aligned} &\text{if } f = \text{nil then } x := \text{cons}(-,-) & \text{(code for alloc)} \\ &\text{else } x := f; f := x.2; \\ &x.2 := f; f := x; \end{aligned} & \text{(code for free)}$$

Verifying the Module

```
{emp
  if f = nil then x := cons(-,-) • Must verify impl. code
     else x := f; f := x.2;
                                      • ... but can't!
                             need private stuff
                                 in assertions!
\{emp * list(f)\}
  if f = \text{nil then } x := \text{cons}(-,-)
                                         ok
     else x := f; f := x.2;
\{x\mapsto -, -*list(f)\}[x]
```

But don't want client to need list(f)

How to enforce client/implementation division within separation logic?

Two Approaches

O' Hearn, Yang, and Reynolds

" Separation and " Information Hiding

POPL 2004

Parkinson and Bierman

" Separation Logic and Abstraction

POPL 2005

hypothetical frame rule

clever new proof rule abstract predicates

whole new can of worms

Extended Language

$$C::=k\mid \mathtt{letrec}\ k_1=C_1,\ldots,k_n=C_n\ \mathtt{in}\ C$$

"Modularity" as groups of implementations

Extended Proof System

$$\Gamma \vdash \{p\}C\{q\}$$

- ullet Γ contains hypotheses $\{p\}k\{q\}[X]$
- is a list of written variables in fn

New Proof Rules (I)

$$\overline{\Gamma, \{p\}k\{q\}[X] \vdash \{p\}k\{q\}}$$

Function call

```
\Gamma, \{p_1\}k_1\{q_1\}[X_1], \dots, \{p_n\}k_n\{q_n\}[X_n] \vdash \{p_1\}C_1\{q_1\}\}
\vdots
\Gamma, \{p_1\}k_1\{q_1\}[X_1], \dots, \{p_n\}k_n\{q_n\}[X_n] \vdash \{p_n\}C_n\{q_n\}
\Gamma, \{p_1\}k_1\{q_1\}[X_1], \dots, \{p_n\}k_n\{q_n\}[X_n] \vdash \{p\}C\{q\}
\Gamma \vdash \{p\}letrec k_1 = C_1, \dots, k_n = C_n in C\{q\}
```

Group of function definitions

• C_i only modifies variables in X_i .

where

• Maintain invariant about X_i

New Proof Rules (II)

Hypothetical Frame Rule

$$\frac{\Gamma, \{p_i\} k_i \{q_i\} [X_i]_{(\text{for } i \le n)} \vdash \{p\} C \{q\}}{\Gamma, \{p_i * r\} k_i \{q_i * r\} [X_i, Y]_{(\text{for } i \le n)} \vdash \{p * r\} C \{q * r\}}$$

extend invariants in hypotheses, too where

- C does not modify variables in r, except through using $k_1, ..., k_n$; and
- Y is disjoint from p, q, C, and the context " Γ , $\{p_1\}k\{q_1\}[X_1], \ldots, \{p_n\}k\{q_n\}[X_n]$ ".

Any client code C checked with public specs $\{p_i\}k_i\{q_i\}[X_i]$ will jive with every private repr. invariant r.

New Proof Rules (II)

Hypothetical Frame Rule

$$\frac{\Gamma, \{p_i\} k_i \{q_i\} [X_i]_{(\text{for } i \le n)} \vdash \{p\} C \{q\}}{\Gamma, \{p_i * r\} k_i \{q_i * r\} [X_i, Y]_{(\text{for } i \le n)} \vdash \{p * r\} C \{q * r\}}$$

where

- C does not modify variables in r, except through using k₁,...,k_n; and
- Y is disjoint from p, q, C, and the context " Γ , $\{p_1\}k\{q_1\}[X_1], \ldots, \{p_n\}k\{q_n\}[X_n]$ ".
- Need restriction to precise predicates, as before:

THEOREM 5.

- (a) The hypothetical frame rule is sound for fixed preconditions $p_1,...,p_n$ if and only if $p_1,...,p_n$ are all precise.
- (b) The hypothetical frame rule is sound for a fixed invariant r if and only if r is precise.

(Derivable) Modularity Rule

$$\Gamma dash \{p_1 * r\} C_1 \{q_1 * r\}$$
 \vdots
 $\Gamma dash \{p_n * r\} C_n \{q_n * r\}$
 $\Gamma, \{p_1\} k_1 \{q_1\} [X_1], \dots, \{p_n\} k_n \{q_n\} [X_n] dash \{p\} C \{q\}$
 $\Gamma dash \{p * r\}$ Let $k_1 = C_1, \dots, k_n = C_n \text{ in } C \{q * r\}$

- C does not modify variables in r, except through using $k_1,...,k_n$;
- Y is disjoint from p, q, C and the context " Γ , $\{p_1\}k_1\{q_1\}[X_1], \ldots, \{p_n\}k_n\{q_n\}[X_n]$ ";
- C_i only modifies variables in X_i, Y .

check impls. with private repr.

- Clearly modular
- Not recursive
- Immediately derivable*

check client with public spec.

* From Hypothetical Frame Rule, letrec rule, and weakening.

Back to Memory Manager

$$\{\operatorname{emp}\}\operatorname{alloc}\{x\mapsto -,-\}[x] = \begin{cases} \operatorname{if} f = \operatorname{nil} \operatorname{then} x := \operatorname{cons}(-,-) \\ \operatorname{else} x := f; f := x.2; \end{cases}$$

$$\Gamma \vdash \{\mathsf{emp} * \mathit{list}(f)\} \cdots \{x \mapsto -, - * \mathit{list}(f)\}$$

• Private invariants with * list(f) for imply

$$\Gamma, \{ \exp \} \text{alloc} \{ x \mapsto -, - \} \vdash \{ \exp \} \cdots \{ \exp \}$$
 • Public invariants without it for clients

Ownership via Assertion

Interface Specifications

```
 \{Q = \alpha \land z = n \land P(z)\} \text{ enq } \{Q = \alpha \cdot \langle n \rangle \land \text{ emp}\} [Q]   \{Q = \langle m \rangle \cdot \alpha \land \text{ emp}\} \text{ deq } \{Q = \alpha \land z = m \land P(z)\} [Q, z]   \{\text{emp}\} \text{ isempty? } \{(w = (Q = \epsilon)) \land \text{ emp}\} [w]
```

Internal Implementations

```
Q := Q \cdot \langle z \rangle; (code for enq)

t := cons(-,-); y.1 := z; y.2 := t; y := t

Q := cdr(Q); (code for deq)

z := x.1; t := x; x := x.2; dispose(t)

w := (x = y) (code for isempty?)
```

- ullet Abstract program variable Q
- Predicate P never used operationally
- Can instantiate Ro enforce ownership!

Ownership via Assertion

Interface Specifications

```
 \{Q = \alpha \land z = n \land P(z)\} \text{ enq } \{Q = \alpha \cdot \langle n \rangle \land \text{ emp}\} [Q]   \{Q = \langle m \rangle \cdot \alpha \land \text{ emp}\} \text{ deq } \{Q = \alpha \land z = m \land P(z)\} [Q, z]   \{\text{emp}\} \text{ isempty? } \{(w = (Q = \epsilon)) \land \text{ emp}\} [w]
```

- \bullet P(v) = emp
- No storage ownership tracked by queue
- $P(v) = v \mapsto -, -$
- Ownership of binary cons cells transferred into/out of queue
- P(v) = (list)(v)
- Ownership of linked lists transferred into/out of queue
- "Ownership is in the eye of the asserter." -- O' Hearn

Concurrency?

Q: How to handle concurrency?

A: Essentially, we've seen it already!

O' Hearn, "Resources, Concurrency, and Local Reasoning"

- Treated resource bundles like private repr's
- Implementations wrapped in CCRs
- CCRs checked with resource invariants

Two Approaches

O' Hearn, Yang, and Reynolds

" Separation and Information Hiding

POPL 2004

Parkinson and Bierman

" Separation Logic and Abstraction

POPL 2005

hypothetical frame rule

clever new proof rule abstract predicates

whole new can of worms

Abstract Predicates

Define abstract predicates whose definitions are known only in certain contexts!

Clients
propagate them
without knowing
their meaning

abstraction boundary

Implementors fold/unfold them at will

Back to Memory Manager

Interface Specifications

$$\{ \operatorname{emp} * \operatorname{list}(f) \} \operatorname{alloc}\{x \mapsto -, - * \operatorname{list}(f) \} [x] \\ \{x \mapsto -, - * \operatorname{list}(f) \} \operatorname{free}() \{ \operatorname{emp} * \operatorname{list}(f) \} []$$

client code

list(f)???

impl.

$$\begin{array}{c} \operatorname{list}(f) \\ \overset{\operatorname{def}}{\Leftrightarrow} \\ (f = \operatorname{nil} \wedge \operatorname{emp}) \vee \\ (\exists g.f \mapsto -, g * \operatorname{list}(g)) \end{array}$$

Extended Proof System

$$\Lambda; \Gamma \vdash \{P\}C\{Q\}$$

$$\Lambda ::= \epsilon \mid \alpha(\overline{x}) \stackrel{\text{def}}{=} P, \Lambda$$

- lack Λ contains definitions of abstract predicates
- Unknown predicates are merely free names
- Think abstract types in module calculi

New Proof Rules (I)

check impls. with predicate definitions Λ'

check client without those definitions

```
\begin{array}{c} \Lambda, \Lambda'; \Gamma \vdash \{P_1\}C_1\{Q_1\} \\ \\ & \vdots \\ \Lambda, \Lambda'; \Gamma \vdash \{P_n\}C_n\{Q_n\} \\ \\ \underline{\Lambda; \Gamma, \{P_1\}k_1(\overline{x_1})\{Q_1\}, \ldots \{P_n\}k_n(\overline{x_1})\{Q_n\} \vdash \{P\}C\{Q\}} \\ \\ \overline{\Lambda; \Gamma \vdash \{P\} \text{let } k_1 \, \overline{x_1} = C_1, \ldots, k_n \, \overline{x_n} = C_n \, \text{in } C\{Q\}} \end{array}
```

- where $\bullet P$, Q, Γ and Λ do not contain the predicate names in $dom(\Lambda')$;
 - dom(Λ) and dom(Λ') are disjoint; and
 - the functions only modify local variables: $modifies(C_i) = \emptyset(1 \le i \le n)$.

Modular group of function definitions

New Proof Rules (II)

$$\frac{\Lambda; \Gamma \vdash \{P\}C\{Q\}}{\Lambda, \Lambda'; \Gamma \vdash \{P\}C\{Q\}}$$

$$\frac{\Lambda, \Lambda'; \Gamma \vdash \{P\}C\{Q\}}{\Lambda; \Gamma \vdash \{P\}C\{Q\}}$$

Weaken abstract env

Eliminate unused abstract env

$$\Lambda \models P \Rightarrow P'$$
 $\Lambda; \Gamma \vdash \{P'\}C\{Q'\}$ $\Lambda \models Q' \Rightarrow Q$ $\Lambda; \Gamma \vdash \{P\}C\{Q\}$ (Enhanced) Rule of Consequence

$$(\alpha(\overline{x}) \stackrel{\text{def}}{=} P), \Lambda \models \alpha(\overline{E}) \Rightarrow P[\overline{E}/\overline{x}]$$
 Open abstract predicate $(\alpha(\overline{x}) \stackrel{\text{def}}{=} P), \Lambda \models P[\overline{E}/\overline{x}] \Rightarrow \alpha(\overline{E})$ Close abstract predicate

^{*} No mention of Rule of Conjunction, so no Reynolds-style unsoundness.

```
Interface
```

```
\begin{aligned} &\{empty\}\texttt{consPool(s)}\{cpool(ret,s)\}\\ &\{cpool(x,s)\}\texttt{getConn(x)}\{cpool(x,s)*conn(ret,s)\}\\ &\{cpool(x,s)*conn(y,s)\}\texttt{freeConn(x,y)}\{cpool(x,s)\} \end{aligned}
```

Abstract predicates

$$\Lambda' = \begin{cases} cpool(x,s) \stackrel{\text{def}}{=} \exists i.x \mapsto i, s * clist(i,s) \\ clist(x,s) \stackrel{\text{def}}{=} x \stackrel{\cdot}{=} null \lor \\ (\exists ij.x \mapsto i, j * conn(i,s) * clist(j,s)) \end{cases}$$

Verification of freeConn impl

```
Interface
```

```
\begin{aligned} &\{empty\}\texttt{consPool(s)}\{cpool(ret,s)\}\\ &\{cpool(x,s)\}\texttt{getConn(x)}\{cpool(x,s)*conn(ret,s)\}\\ &\{cpool(x,s)*conn(y,s)\}\texttt{freeConn(x,y)}\{cpool(x,s)\} \end{aligned}
```

Abstract predicates

$$\Lambda' = \begin{cases} cpool(x,s) \stackrel{\text{def}}{=} \exists i.x \mapsto i, s * clist(i,s) \\ clist(x,s) \stackrel{\text{def}}{=} x \stackrel{\cdot}{=} null \lor \\ (\exists ij.x \mapsto i, j * conn(i,s) * clist(j,s)) \end{cases}$$

Verification of client (fails), which doesn't assume Λ'

```
\{cpool(x,s)\}\ y = getConn(x); \{cpool(x,s)*conn(y,s)\}\ \{conn(y,s)\}\ useConn(y); \{conn(y,s)\}\ \{cpool(x,s)*conn(y,s)\}\ freeConn(x,y); \{cpool(x,s)\}\ useConn(y) \{cpool(x,s)\}\ could work if we could open cpool defn! \{cpool(x,s)\}\
```

Benefit Over OYR's Approach

- Abstract predicates in public interfaces
 - OYR approach hides even the mention of representation invariants

```
sep. conj. over range i=0 to n-1 blocks storage  \{empty\} \text{malloc}(\mathbf{n}) \{ \odot_{i=0}^{n-1}.ret + i \mapsto \_*Block(ret,n) \}   \{ \odot_{i=0}^{n-1}.x + i \mapsto \_*Block(x,n) \} \text{free}(\mathbf{x}) \{ empty \}
```

- ullet Client must thread through Block predicate
 - In OYR client doesn't ever seeBlock(x,n)

Not Covered Here

- Parkinson and Bierman's extention to OOP
 - Uses abstract predicate families (§4)
- Semantics and proofs -- the technical work!
 - Both use denotational semantics with standard model for sep. logic
 - O'Hearn et al. simplify interpretations of sequents with "greatest relations" and proofs with simulation relations (§10.1 and journal version)

Conclusions

- Hypothetical frame rule and abstract predicates both allow modular reasoning
- Differ in what client sees
 vs. what client understands
- Abstract predicates more powerful
- Hypothetical frame rule more succinct*

^{*} Some specifications are more succinct with HFR. [OYR journal p. 46]