Modularity in
Separation Logic

Scott Kilpatrick

CPL Seminar
06 June 201 |

Modularity Separation (Logic)

VS.
Divide program into Divide heap into
client and implementor, relevant and irrelevant,
and reason locally and reason locally

Implementor uses
representation details; 22?7
client does not

e.g. Sequential memory manager

Interface Specifications

{emplalloc{x——,—} [x] public
{x H—,—}free{emp} H - B
" Resource Invariant: list(f) def (f =nil Aemp)V

(3g.f — —, g * list(g))
Private Variables: f

Internal Implementations

if f =nil then x:= cons(—,—) (code for alloc)
elsex:=f,; f:=x.2;

x2:=f;f:=x; (code for free)

Pr'wate

Verifying the Module

{em?}\b —~
if f=nThthenx:=cons(——) e Myst verify impl. code

else x = = X.2:

{x%x] N ..butcan t!
| | o neea pri\/ate stu-(:f

L assertlong!

{emp * list(f)}
if f =nil then x:= cons(—,—)
elsex:=f; f:=x.2; Ok

{x — —,— x list(f)}|x]

But don’ t want client to need list(f) !

How to enforce
client/implementation
division within
separation logic!

Two Approaches

O’ Hearn,Yang, and Reynolds

« Separation and ‘
Information Hiding

POPL 2004

T
o —

hypothetical A
frame rule

A
i

Extended Language
C :=k|letrec ki =0C4,...,k,=C, in C

® "Modularity” as groups of implementations

Extended Proof System
'+ {p}C{q}

® ' contains hypotheses {p}k{q}|X]
X

® s alist of written variables in fn

New Proof Rules ()

T Apik{q}X] - {p}kiq}

[+ {p}letrecky =Cy,....ky =C, in C{q}

where
e (; only modifies variables in Xj.

* Function call

* Group of function
definitions

* Maintain invariant about X;

New Proof Rules (ll)

Hypothetical Frame Rule

U, {pitkilqi} | Xi] (for i<n) F AP}C1q}
U, {pi*rikilqi*r}Xi, Y] fori<n) = AP *r}C{q*71}

AN
/ where
e (C does not modify variables in r, except through
extend Lnvariants winghy feimd
’ . is disjoint from p, g, C, and the context
n hyypotheses, too “TAp k(@YX {pa b gn})"

Any client code C' checked with public specs

{pi}ki{a: } | Xi] will jive with every private repr. invariant 7.

New Proof Rules (ll)

Hypothetical Frame Rule

U, pitkilqi} | Xi] (for i<n) - 1P}C1q}
U, {pi*rikilqi*r}Xi, Y] fori<n) = AP *r}C{q*71}

where
e (does not modify variables in r, except through
using ki, ..., k,: and

e Y is disjoint from p, g, C, and the context
“ToApiikdgiyXal,. .. Apatk{gn}[Xa]”.

* Need restriction to precise predicates, as before:

THEOREM 5.
(a) The hypothetical frame rule is sound for fixed preconditions

Pl,--s Pn if and only if py,..., p, are all precise.

(b) The hypothetical frame rule is sound for a fixed invariant r if
and only if r is precise.

(Derivable) Modularity Rule

o enCuare] B check tmpls.
CHA{p*r}Ci{q *r _. 1 1
| , / with private repr.

L E {py«rCylgy 1) * Clearly modular
L {p i {qi Y Xl o {pntkn{gn}[Xa] F {p}C{q} < * Not recursive
CH{pxriletk; =Ci,....,ky = C, in C{g+r} * Immediately derivable™

e C does not modify variables in r, except through using
kl-."'-.kll;

e Y is disjoint from p, g, C and the context

e (; only modifies variables in X;, Y. Ol/l CGR GLLBV\,‘t
with publie spec.

-
S——— AT

* From Hypothetical Frame Rule, letrec rule, and weakening.

Back to Memory Manager

*

{emp}alloc{x———}[x] = . elsex:=f:f:=x.2:

-

[+ {emp * list(f)}---{x — —, — x list(f)}

* Private invariants with * lsi(f) for impls

[',{emp}alloc{x — —,—} F {emp} - - - {emp}
* Public invariants without it for clients

Ownership via Assertion

Interface Specifications
{0=anz=nAP(z)}enq{Q = o:(n) Aemp} O]
{QO= (m)-aNempldeq{Q=aAz=m /QP(ZD 0,7
{emp} isempty? {(w = (O =¢)) Aemp} [w]

Internal Implementations

Q:=0-(2); (code for enq)
t:=cons(—,—);y.1:=z;y2:=t,y:=t
Q :=cdr(Q); (code for deq)

z:=x.1;t:=x; x:=x.2; dispose(t)

wi=(x=y) (code for isempty?)

* Abstract program variable QO
* Predicate P never used operationally
* Can instantiate Ito enforce ownership!

Ownership via Assertion

Interface Specifications
{0=0aAz=nAP(z)}eng{Q = o (n) Aemp} O]
{Q= (m)-aNempldeq{Q=aAz=m &P(zD 0,7
{emp} isempty? {(w = (Q =¢)) Aemp} [w]

* P(v) = emp

* No storage ownership tracked by queue

* Plv)=v— —, —
* Ownership of binary cons cells transferred into/out of queue

* P(v) = (list)(v)

* Ownership of linked lists transferred into/out of queue

“Ownership is in the eye of the asserter.” -- O Hearn

Concurrency?

Q: How to handle concurrency?
A: Essentially, we’ ve seen it already!

y 11 I
O’ Hearn, “Resources, Concurrency, and Local Reasoning”

* Treated resource bundles like private repr s
* Implementations wrapped in CCRs
* CCRs checked with resource invariants

Two Approaches

Parkinson and Bierman

« Separation Logic »
and Abstraction

POPL 2005

@t
predicates._

A e et T
j -

]

/

_. wholg new
can of worms

Abstract Predicates

Define abstract predicates whose
definitions are known
only in certain contexts!

Clients
propagate them
without knowing
their meaning

Implementors
fold/unfold them
at will

abstraction
boundary

Back to Memory Manager

Interface Specifications
{emp * list(f)}alloc{x — —, — * list(f) }|x]
{x — —,— x list(f) }free(){emp * list(f)}|]

client i impl.

L

list(f) hs‘}t%(ff)
7?77

. (f =nilAemp)V
(Hg fr —,gxlist(g))

Extended Proof System

AT EA{PYCO{Q}

A:=c¢|alr) TP A

® A contains definitions of abstract predicates
® Unknown predicates are merely free names

® Think abstract types in module calculi

New Proof Rules (l)

check 'mel,s.
with preol'watc | AN T E{PLYC1{Q1}
definitions A~ > ‘

A,AI;F - {Pn}cn {Qn}

7 AT, { Pk (@D{Q1) - . {Pa bk (@T){Qn)} F {P}YC{Q)
AT {P}let ki z1=C1,..., knTn=Cr in C{Q}

/
‘/ where e P, (), I' and A do not contain the predicate names in
dom(A'):
, e dom(A) and dom(A’") are disjoint; and
GV!BOR GLLCV\/t e the functions only modify local variables:
WLthOl/(,t those modifies(C;) = 0(1 <i < n).
defintitions

* Modular group of function definitions

New Proof Rules (ll)

AT {PYC{Q} AN T EA{PYC{Q}
A AT {PYC{Q} AT HA{PC{Q}
Weaken abstract env Eliminate unused abstract env

QEP=P) ATH{PIC{Q} AEQ = Q)

/ AT - {PYC{Q} o
((Enhanced) Rule of Consequence
|
(@) < P),A E)= PE/zZ] Open abstract predicate
(a@) = P),A E P[E/7|=aE) Close abstract predicate

* No mention of Rule of Conjunction, so no Reynolds-style unsoundness.

{empty}consPool (s){cpool(ret, s)}

Interface {epool(x, s) }getConn (x){cpool(x, s) x conn(ret,s)}
{epool(x,s) * conn(y, s)}freeConn(x,y){cpool(x,s)}
Abstract predicates dof
, cpool(x,s) = Ji.x +— 1,8 * clist(i, s)
A = clist(z, s) © = null v

(Fij.x — 1,5 * conn(i,s) * clist(j, s))

Verification of freeConn impl

{cpool(x, s) * conn(y, s)}) 0'P6V\f CpOOl

{Ji.x — 1, s * clist(i, s) * conn(y,
t=[x];

{x — t, s *clist(t, s) * conn(y, s)}
n=cons(y,t);

{x —t,sxn > y,tx*clist(t,s) * conn(y, s)}
[X]=n

{x — n,s*xn— y,t=*clist(t,s) x conn(y, s)}

{x — n,s*clist(n, s)}

{cpool(z, s)} cloce clist

{empty}consPool (s){cpool(ret, s)}

Interface {epool(x, s) }getConn (x){cpool(x, s) x conn(ret,s)}
{epool(x,s) * conn(y, s)}freeConn(x,y){cpool(x,s)}
Abstract predicates dof
, cpool(x,s) = Ji.x — 1,8 x clist(i, s)
A = clist(x, s) ©f = null v

(Fij.x — 1,75 * conn(i,s) * clist(j,s))

Verification of client (fails), which doesn’ t assume A’

{cpool(x, s)}
y = getConn(x);

{epool(z, s) * conn(y, s)} » fm mee rule

{conn(y, s)} L/

useConn(y) ;

{conn(y, s)}
{epool(z, s) * conn(y, s)}
freeConn(x,v);

{cpool(z, 5)} could work i:f We
) Q_—-——““"’-’,
coulad OpeEn cpool olefv\,!

useConn(y)

{222}

Benefit Over OYR's
Approach

® Abstract predicates in public interfaces

® OYR approach hides even the mention
of representation invariants

ret dewnotes n

sep. cony. over blocks storage

range L=0 to n-1
{empty}malloc(n){’\” o -Tet+1i— *rok 7et n)p

(/Q" gL+ 1 +—>)* Block(z,n)}free(x) {empty}

® Client must thread through Block predicate

® In OYR client doesn’ t ever seeBlock(z,n)

Not Covered Here

® Parkinson and Bierman’s extention to OOP

® Uses abstract predicate families (§4)

® Semantics and proofs -- the technical work!

® Both use denotational semantics with
standard model for sep. logic

® O'Hearn et al. simplify interpretations of
sequents with “greatest relations” and
proofs with simulation relations (§10.] and

journal version)

Conclusions

Hypothetical frame rule and abstract
predicates both allow modular reasoning

Differ in what client sees
vs. what client understands

Abstract predicates more powerful

Hypothetical frame rule more succinct™

* Some specifications are more succinct with HFR. [OYR journal p. 46]

