
Modularity in���
Separation Logic	

Scott Kilpatrick	

CPL Seminar	

06 June 2011	

Modularity	

 Separation (Logic)	

Divide program into	

client and implementor,	

and reason locally	

Divide heap into	

relevant and irrelevant,	

and reason locally	

Implementor uses	

representation details;	

client does not	

???	

vs.	

e.g. Sequential memory manager	

private!

public!

• Must verify impl. code	

•  ... but can’t!	

ok	

need private stuff!
in assertions!!

Verifying the Module	

But don’t want client to need !	

How to enforce���
client/implementation���

division within���
separation logic?	

“ ”	

Two Approaches	

O’Hearn, Yang, and Reynolds	

POPL 2004	

hypothetical	

frame rule	

Parkinson and Bierman	

POPL 2005	

abstract	

predicates	

clever new!
proof rule! whole new!

can of worms!

Separation and	

Information Hiding	

Separation Logic	

and Abstraction	

“ ”	

Extended Language	

•  “Modularity” as groups of implementations	

Extended Proof System	

•  contains hypotheses 	

•  is a list of written variables in fn 	

New Proof Rules (I)	

•  Function call	

• Group of function���
definitions	

• Maintain invariant about 	

New Proof Rules (II)	

Hypothetical Frame Rule	

Any client code checked with public specs	

will jive with every private repr. invariant .	

extend invariants!
in hypotheses, too!

New Proof Rules (II)	

Hypothetical Frame Rule	

• Need restriction to precise predicates, as before:	

(Derivable) Modularity Rule	

•  Clearly modular	

• Not recursive	

•  Immediately derivable*���
	

* From Hypothetical Frame Rule, letrec rule, and weakening.	

check impls.!
with private repr.!

check client!
with public spec.!

Back to Memory Manager	

•  Private invariants with for impls	

•  Public invariants without it for clients���
	

Ownership via Assertion	

•  Abstract program variable	

•  Predicate never used operationally	

•  Can instantiate to enforce ownership! 	

Ownership via Assertion	

•  	

•  No storage ownership tracked by queue	

•  	

•  Ownership of binary cons cells transferred into/out of queue	

•  	

•  Ownership of linked lists transferred into/out of queue	

“Ownership is in the eye of the asserter.” -- O’Hearn	

Concurrency?	

Q: How to handle concurrency?	

A: Essentially, we’ve seen it already!	

O’Hearn, “Resources, Concurrency, and Local Reasoning”	

•  Treated resource bundles like private repr’s	

•  Implementations wrapped in CCRs	

•  CCRs checked with resource invariants	

“ ”	

Two Approaches	

O’Hearn, Yang, and Reynolds	

POPL 2004	

hypothetical	

frame rule	

Parkinson and Bierman	

POPL 2005	

abstract	

predicates	

clever new!
proof rule! whole new!

can of worms!

Separation and	

Information Hiding	

Separation Logic	

and Abstraction	

“ ”	

Abstract Predicates	

Define abstract predicates whose	

definitions are known	

only in certain contexts!	

Implementors	

fold/unfold them	

at will	

Clients	

propagate them	

without knowing	

their meaning	

 ab
st

ra
ct

io
n	

bo
un

da
ry
	

Back to Memory Manager	

client	

code	

impl.	

code	

Extended Proof System	

•  contains definitions of abstract predicates	

•  Unknown predicates are merely free names	

•  Think abstract types in module calculi	

New Proof Rules (I)	

• Modular group of function definitions	

check client!
without those!
definitions!

check impls.!
with predicate!
definitions . !

New Proof Rules (II)	

Weaken abstract env	

 Eliminate unused abstract env	

(Enhanced) Rule of Consequence	

Open abstract predicate	

Close abstract predicate	

* No mention of Rule of Conjunction, so no Reynolds-style unsoundness.	

Interface	

Abstract predicates	

Verification of impl	

open!

close!

Interface	

Abstract predicates	

Verification of client (fails), which doesn’t assume 	

frame rule!

could work if we!
could open defn!!

•  Client must thread through predicate	

•  In OYR client doesn’t ever see	

•  Abstract predicates in public interfaces	

• OYR approach hides even the mention ���
of representation invariants	

Benefit Over OYR’s
Approach	

ret denotes n!
blocks storage!sep. conj. over!

range i=0 to n-1!

•  Parkinson and Bierman’s extention to OOP	

•  Uses abstract predicate families (§4)	

•  Semantics and proofs -- the technical work!	

•  Both use denotational semantics with���
standard model for sep. logic	

• O’Hearn et al. simplify interpretations of���
sequents with “greatest relations” and���
proofs with simulation relations (§10.1 and���
journal version)	

Not Covered Here	

•  Hypothetical frame rule and abstract���
predicates both allow modular reasoning	

•  Differ in what client sees���
 vs. what client understands	

•  Abstract predicates more powerful	

•  Hypothetical frame rule more succinct*	

Conclusions	

* Some specifications are more succinct with HFR. [OYR journal p. 46]	

