
Axiomatic Proof
Techniques for Sequential

and Parallel Programs

Jonas Kaiser

UdS, Graduate School of Computer Science

May 2, 2011

Introduction

General Idea
Define axioms and simple rules for the building blocks of our
programming language such that the resulting logic is:

• Sound with respect to the semantics of the language.
• Compositional, i.e. assertions that are true for parts of the

program can be used to derive assertions about the whole
program.

Such a logic can be used to give strong guarantees about
program behaviour. Plus it might serve as a form of
documentation that is necessarily in sync with the code.
Note that neither of the two papers deals with more elaborate
language constructs like jumps, labels, method or function calls
and more interesting numeric types.

1969: C. A. R. Hoare

• An Axiomatic Basis for Computer Programming
• Considers only sequential programs (no concurrency)
• Origin of the so-called Hoare Logic
• Expressions are evaluated without side effects (both in

assignments as well as in conditionals)
• Basic rule set very cumbersome to use, author already

suggests to formulate derived rules for larger language
constructs.

• Fairly practical motivations: reduce development times,
reduce bug-fixing and testing costs, better portability and
dealing with machine dependence, prevent mission critical
failures (apparently including a world war …)

A little While-Language

We reason about programs expressed in the following small
language:

C ::= skip | x := e | C1;C2 |
if B then C1 else C2 |
while B do C

Partial Correctness Statements

Notation originally used by Tony Hoare:

` P { C } Q

Conventional notation used today (and in this talk):

` { P } C { Q }

Here P and Q are logical statements, while C is a program in
our basic while-language. The statement should be read as

(ρb � P) ∧ (C ρb = ρe)⇒ (ρe � Q)

The Axioms
Skip:

` { P } skip { P }

Assignment:

` { Q[e/x] } x := e { Q }

Remark. There are two common misconceptions of how this
rule should look like. Both are unsound since they allow to
derive facts which are clearly wrong:

` { P } x := e { P [x/e] } ` { P } x := e { P [e/x] }

` { X = 0 } X := 1 { X = 0 } ` { X = 0 } X := 1 { 1 = 0 }

The Axioms
Skip:

` { P } skip { P }

Assignment:

` { Q[e/x] } x := e { Q }

Remark. There are two common misconceptions of how this
rule should look like. Both are unsound since they allow to
derive facts which are clearly wrong:

` { P } x := e { P [x/e] } ` { P } x := e { P [e/x] }

` { X = 0 } X := 1 { X = 0 } ` { X = 0 } X := 1 { 1 = 0 }

The Axioms
Skip:

` { P } skip { P }

Assignment:

` { Q[e/x] } x := e { Q }

Remark. There are two common misconceptions of how this
rule should look like. Both are unsound since they allow to
derive facts which are clearly wrong:

` { P } x := e { P [x/e] } ` { P } x := e { P [e/x] }

` { X = 0 } X := 1 { X = 0 } ` { X = 0 } X := 1 { 1 = 0 }

The Axioms
Skip:

` { P } skip { P }

Assignment:

` { Q[e/x] } x := e { Q }

Remark. There are two common misconceptions of how this
rule should look like. Both are unsound since they allow to
derive facts which are clearly wrong:

` { P } x := e { P [x/e] } ` { P } x := e { P [e/x] }

` { X = 0 } X := 1 { X = 0 }

` { X = 0 } X := 1 { 1 = 0 }

The Axioms
Skip:

` { P } skip { P }

Assignment:

` { Q[e/x] } x := e { Q }

Remark. There are two common misconceptions of how this
rule should look like. Both are unsound since they allow to
derive facts which are clearly wrong:

` { P } x := e { P [x/e] } ` { P } x := e { P [e/x] }

` { X = 0 } X := 1 { X = 0 } ` { X = 0 } X := 1 { 1 = 0 }

Syntax Rules

Sequencing:

` { P } C1 { R } ` { R } C2 { Q }
` { P } C1;C2 { Q }

Conditional:

` { P ∧B } C1 { Q } ` { P ∧ ¬B } C2 { Q }
` { P } if B then C1 else C2 { Q }

While:
` { P ∧B } C { P }

` { P } while B do C { P ∧ ¬B }

Syntax Rules

Sequencing:

` { P } C1 { R } ` { R } C2 { Q }
` { P } C1;C2 { Q }

Conditional:

` { P ∧B } C1 { Q } ` { P ∧ ¬B } C2 { Q }
` { P } if B then C1 else C2 { Q }

While:
` { P ∧B } C { P }

` { P } while B do C { P ∧ ¬B }

Syntax Rules

Sequencing:

` { P } C1 { R } ` { R } C2 { Q }
` { P } C1;C2 { Q }

Conditional:

` { P ∧B } C1 { Q } ` { P ∧ ¬B } C2 { Q }
` { P } if B then C1 else C2 { Q }

While:
` { P ∧B } C { P }

` { P } while B do C { P ∧ ¬B }

Further Rules
Consequence:

` P ⇒ P ′ ` { P ′ } C { Q′ } ` Q′ ⇒ Q

` { P } C { Q }

Conjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∧ P2 } C { Q1 ∧Q2 }

Disjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∨ P2 } C { Q1 ∨Q2 }

Further Rules
Consequence:

` P ⇒ P ′ ` { P ′ } C { Q′ } ` Q′ ⇒ Q

` { P } C { Q }

Conjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∧ P2 } C { Q1 ∧Q2 }

Disjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∨ P2 } C { Q1 ∨Q2 }

Further Rules
Consequence:

` P ⇒ P ′ ` { P ′ } C { Q′ } ` Q′ ⇒ Q

` { P } C { Q }

Conjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∧ P2 } C { Q1 ∧Q2 }

Disjunction:

` { P1 } C { Q1 } ` { P2 } C { Q2 }
` { P1 ∨ P2 } C { Q1 ∨Q2 }

1975: Susan Owicki and David Gries

• An Axiomatic Proof Technique for Parallel Programs
• Tries to reason about concurrent programs
• Extends basic While-Language with parallel constructs
• Replaces reasoning about dynamic execution behaviour

with effects on static proofs of correctness

Extending the language

To reason about concurrency we need to modify our
While-Language, thus:

C ::= . . . | await B then C |
cobegin C1//C2// . . . //Cn coend

Note that in the await construct, C may neither contain another
await nor a cobegin construct. Also an await construct is
atomic, including the evaluation of B.

New Proof Rules

Await:
` { P ∧B } C { Q }

` { P } await B then C { Q }

Cobegin:

` ∀i ∈ [1, n] : { Pi } Ci { Qi } ` Noninterference

` {
∧

1≤i≤n
Pi } cobegin C1// . . . //Cn coend {

∧
1≤i≤n

Qi }

New Proof Rules

Await:
` { P ∧B } C { Q }

` { P } await B then C { Q }

Cobegin:

` ∀i ∈ [1, n] : { Pi } Ci { Qi } ` Noninterference

` {
∧

1≤i≤n
Pi } cobegin C1// . . . //Cn coend {

∧
1≤i≤n

Qi }

Noninterference I

• Assume shared variables (otherwise noninterference holds
vacuously)

• Interference with respect to static proofs not dynamic
executions

• Key idea: execution of a statement does not invalidate
proofs of other code fragments that may run in parallel with
the statement in question.

• For this we require invariants of the form:
` { P ∧ pre(C) } C { P }

Noninterference II

Definition (3.4). Given a proof { P } C { Q } and a statement T
with precondition pre(T), we say that T does not interfere with
{ P } C { Q } if the following two conditions hold:

• { Q ∧ pre(T) } T { Q }
• Let C ′ be any statement within C but not within an await.

Then { pre(C ′) ∧ pre(T) } T { pre(C ′) }

Definition (3.5). { P1 } C1 { Q1 } . . . { Pn } Cn { Qn } are
interference-free if the following holds. Let T be an await or
assignment statement (which does not appear in an await) of
process Ci. Then for all j, j 6= i, T does not interfere with
{ Pj } Cj { Qj }

Noninterference II

Definition (3.4). Given a proof { P } C { Q } and a statement T
with precondition pre(T), we say that T does not interfere with
{ P } C { Q } if the following two conditions hold:

• { Q ∧ pre(T) } T { Q }
• Let C ′ be any statement within C but not within an await.

Then { pre(C ′) ∧ pre(T) } T { pre(C ′) }
Definition (3.5). { P1 } C1 { Q1 } . . . { Pn } Cn { Qn } are
interference-free if the following holds. Let T be an await or
assignment statement (which does not appear in an await) of
process Ci. Then for all j, j 6= i, T does not interfere with
{ Pj } Cj { Qj }

Translating semaphores

Since the await construct is too powerful to be used directly by
the programmer, the paper provides a translation of
semaphores to the augmented While-Language:

• P (sem) await sem > 0 then sem := sem− 1

• V (sem) await true then sem := sem+ 1

Note that the await construct provides the atomicity that is
required for the semaphore abstraction to work.

Deadlock avoidance
Theorem (6.5). Let S be a statement with proof { P } S { Q }.
Let the awaits of S which do not occur within cobegins of S be

• Aj : await Bj then . . .

Let the cobegins of S which do not occur within other
cobegins of S be

• Tk : cobegin Sk
1//S

k
2// . . . //S

k
nk

coend
Define

• D(S) = [
∨

j(pre(Aj) ∧ ¬Bj)] ∨ [
∨

kD1(Tk)]

• D1(Tk) = [
∧

i(post(S
k
i) ∨D(Sk

i))] ∧ [
∨

iD(Sk
i)]

Then

D(S) = false ∧ S is a program⇒ S is deadlock free

Proof. By induction on level of nesting of cobegins.

Termination and Total correctness

To ensure that we get proofs of total rather than partial
correctness, we need to be able to show termination. A
program may fail to terminate properly due to one of the two
following cases.

• An infinite loop, i.e. the loop guard is always true
• The program deadlocks due to cyclic dependencies

between guards

Termination and Total correctness
The first can be fixed by requiring that each loop iteration steps
down a well-founded chain. The new while rule is then:

` [P ∧B] C [P]
` wdec(P ∧B,C, t) ` (P ∧ t ≤ 0)⇒ ¬B

` [P] while B do C [P ∧ ¬B]

The second is solved by augmenting the cobegin rule (using
our earlier condition):

` ∀i ∈ [1, n] : [Pi] Ci [Qi] ` Noninterference
` ∀i ∈ [1, n] : [Pi] Ci [Qi] is deadlock-free

` [
∧

1≤i≤n
Pi] cobegin C1// . . . //Cn coend [

∧
1≤i≤n

Qi]

All other rules carry over unchanged (just replace {} with []).

Termination and Total correctness
The first can be fixed by requiring that each loop iteration steps
down a well-founded chain. The new while rule is then:

` [P ∧B] C [P]
` wdec(P ∧B,C, t) ` (P ∧ t ≤ 0)⇒ ¬B

` [P] while B do C [P ∧ ¬B]

The second is solved by augmenting the cobegin rule (using
our earlier condition):

` ∀i ∈ [1, n] : [Pi] Ci [Qi] ` Noninterference
` ∀i ∈ [1, n] : [Pi] Ci [Qi] is deadlock-free

` [
∧

1≤i≤n
Pi] cobegin C1// . . . //Cn coend [

∧
1≤i≤n

Qi]

All other rules carry over unchanged (just replace {} with []).

Termination and Total correctness
The first can be fixed by requiring that each loop iteration steps
down a well-founded chain. The new while rule is then:

` [P ∧B] C [P]
` wdec(P ∧B,C, t) ` (P ∧ t ≤ 0)⇒ ¬B

` [P] while B do C [P ∧ ¬B]

The second is solved by augmenting the cobegin rule (using
our earlier condition):

` ∀i ∈ [1, n] : [Pi] Ci [Qi] ` Noninterference
` ∀i ∈ [1, n] : [Pi] Ci [Qi] is deadlock-free

` [
∧

1≤i≤n
Pi] cobegin C1// . . . //Cn coend [

∧
1≤i≤n

Qi]

All other rules carry over unchanged (just replace {} with []).

Thank you for listening

Questions?

	Introduction
	1969: C. A. R. Hoare
	1975: Susan Owicki and David Gries

