
Concurrent Abstract Predicates

Chung-Kil Hur

21 Jul 2011

@CPL Seminar

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Language

• 𝑐 ∈ 𝒫(Heap × Heap): basic command

• How to model Stack ?

• Allow mutual recursion ?

Operational Semantics

Operational Semantics

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Worlds (Logical Memory)

𝐻𝐿 , 𝑝𝑟𝐿 . . . 𝐻1, 𝑝𝑟1, 𝐼1

r1

𝐻𝑛, 𝑝𝑟𝑛, 𝐼𝑛

rn

Worlds (Logical Memory)

𝐻𝐿 , 𝑝𝑟𝐿 . . . 𝐻1, 𝑝𝑟1, 𝐼1

r1

𝐻𝑛, 𝑝𝑟𝑛, 𝐼𝑛

rn

Worlds (Logical Memory)

𝐻𝐿⊕𝐻𝐿
′ = 𝐻𝐿 ⊎ 𝐻𝐿

′

𝑝𝑟𝐿⊕𝑝𝑟𝐿
′ = 𝜆𝑡. 𝑝𝑟𝐿 𝑡 +≤1 𝑝𝑟𝐿

′(𝑡)

𝐻𝐿 , 𝑝𝑟𝐿 . . . 𝐻1, 𝑝𝑟1, 𝐼1

r1

𝐻𝑛, 𝑝𝑟𝑛, 𝐼𝑛

rn

Worlds (Logical Memory)

𝐻𝐿 , 𝑝𝑟𝐿 . . . 𝐻1, 𝑝𝑟1, 𝐼1

r1

𝐻𝑛, 𝑝𝑟𝑛, 𝐼𝑛

rn

 1

(𝛾, 𝑣) ∈ adom((𝑠 𝑟)2)

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Assertions

• 𝑥, 𝑦, … : Free logical variables
• 𝛼, 𝛽,… : Abstract predicates

Assertion Semantics

Assertion Semantics

Simple Equalities

Nesting is necessary

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Interference Semantics

Guarantee

What goes wrong with this?

 𝐺𝛿 = (𝐺𝛿)
∗

Rely

Stability

Repartitioning

such that ℎ2⊕ℎ′ defined ?

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Judgments

Why do we need this?

can′t ∀𝑥 . 𝛼 𝑥 ≡ 𝑃 be a sugar for ∀𝑥 . 𝛼 𝑥 ⟹ 𝑃, ∀𝑥 . 𝑃 ⟹ 𝛼 𝑥 ?

Configuration Safety

Judgment Semantics

Step-indexing:
- Easy for dealing with recursive functions.
- But, might be problematic with memoization.
- There might be a coinductive solution.

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Proof Rules

All rules assume that the pre- and post-conditions of their judgments are stable.

Proof Rules

All rules assume that the pre- and post-conditions of their judgments are stable.

𝛼 occurs positively in 𝑅

Recursive Let is derivable.
But we need a rule
for eliminating unused Γ.

Frame Rule Bug ?

region name conflict ?

⊢ 𝑥 ↦ 0 skip 𝑥 ↦ 0
∅

𝑟

⊢ stable 𝑦 ↦ 1
∅

𝑟

 x ↦ 0 ∗ 𝑦 ↦ 1
∅

𝑟
 skip 𝑥 ↦ 0

∅

𝑟
∗ 𝑦 ↦ 1

∅

𝑟

My Thought (Maybe Wrong):
• Clients do not know which region names will be used by modules.
• So, if clients use some shared regions, how do they know the region names are

not used by other abstract modules?
• In particular, when you frame in abstract predicates using Frame Rule, there is

no guarantee that there are no region name conflicts.

Derived Rule for Module

Δ′

Soundness

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Lock Specification for Client

Δ ∶

Γ ∶

Lock Specification for Module

Additional Axioms Δ′ ∶

Lock Verification

Lock Verification

Lock Verification

Set Specification for Client

Γ ∶

Δ ∶

where own ℎ, 𝑣 ≔ in ℎ, 𝑣 ∨ out(ℎ, 𝑣)

emp mkemp ⊛𝑣. out(ret, 𝑣)

is needed to be a concurrent set

External Modules for Set

Sequential Set Module

Lock Module

emp mkemp Set(ret, ∅)

Set Specification for Module
Additional Axioms Δ′ ∶

Set Verification

Outline

• Language and Operational Semantics

• Worlds (Logical Memory)

• Assertions

• Interferences

• Judgments

• Proof Rules and Soundness

• Examples

• Conclusions and Related Work

Conclusions and Related Work

• Abstract Predicate

• Deny-Guarantee

• Context Logic

• B. Jacobs and F. Piessens. Modular full
functional specification and verification of
lock-free data structures.

• Alternative Approach: Linearizablility

