
CPL seminar
2011-07-18

(with tiny revisions)

Georg Neis

Today:

Mike Dodds, Xinyu Feng, Matthew J. Parkinson,
Viktor Vafeiadis: Deny-Guarantee Reasoning.

ESOP 2009: 363-377

http://www.cl.cam.ac.uk/~mjp41/dg.pdf
http://www.cl.cam.ac.uk/~mjp41/dg.pdf
http://www.cl.cam.ac.uk/~mjp41/dg.pdf
http://www.cl.cam.ac.uk/~mjp41/dg.pdf

Overview

• Generalization of Rely-Guarantee

• Program logic for dynamic concurrency

– Fork/join; interference changes over time

• Separating conjunction splits interference
(with the help of fractional permissions)

• Soundness wrt highly instrumented semantics
(technical appendix contains erasure details)

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Raw language semantics

• Local semantics (single thread):

• Global semantics (collection of threads):

• Simplifying restriction: no memory allocation,
no local variables

Raw language semantics

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Recall: Rely-guarantee conditions

• Interference becomes part of specification, in the
form of two binary relations:

• “R and G summarise the properties of the individual atomic
actions invoked by the environment (in the case of R) and the
thread itself (in the case of G).” (Vafeiadis)

From R-G to D-G

• Recall Rely-Guarantee:

• Doesn’t make sense for dynamic concurrency:
Interference before a fork is not the same as after a fork

From R-G to D-G

• What about specs of the following form? {(R, G), P} C {(R′, G′), P′}

• Attempt to adapt R-G rule:
𝑅1,𝐺1 ,𝑃 C {… } 𝐺1⊆𝑅2 ∧ 𝐺2⊆𝑅1

𝑅,𝐺 ,𝑃 fork C (𝑅2,𝐺2 ,… }

• Rewrite as
𝑅1,𝐺1 ,𝑃 C {… }

𝑅1,𝐺1 ∗(𝑅2,𝐺2), 𝑃 fork C (𝑅2,𝐺2 ,… }
 via separation between R,G:

𝑅1, 𝐺1 ∗ 𝑅2, 𝐺2 = 𝑅1 ∩ 𝑅2, 𝐺1 ∪ 𝐺2 if 𝐺1 ⊆ 𝑅2 ∧ 𝐺2 ⊆ 𝑅1

• Doesn’t work: no cancellativity

𝐴 ∗ 𝐵1 = 𝐴 ∗ 𝐵2 ⇒ 𝐵1 = 𝐵2
𝑅, 𝐺 ∗ (𝑅1, 𝐺1) = (𝑅, 𝐺) ∗ (𝑅2, 𝐺2) ⇒ 𝑅1, 𝐺1 = (𝑅2, 𝐺2)

(Not per se unsound, but traditional approach to proving soundness not
applicable)

From R-G to D-G

• But idea is right! Want simple rules:

• Let’s do this, and throw in fractional
permissions, too.

Permissions

Can look at
the store

Permissions

Addition is commutative, associative, cancellative, and has 0 as a unit
element. Lifting addition pointwise to 𝑝𝑟 ∈ PermDG, can define a separation
logic.

Permission examples

• Notation:

• Example:

• Splitting property:

• Example:

Permission examples

• Another splitting property:
If 𝑃 precise and satisfiable, then:

• Example:

Precise
wrt. what?

Extracting R-G

Assertions

𝑝𝑟 = 𝜆𝑎. 1

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Recall: Raw language semantics

• Local semantics (single thread):

• Global semantics (collection of threads):

• Simplifying restriction: no memory allocation,
no local variables

Instrumented language semantics

• Local semantics (single thread):

• Global semantics (collection of threads):

• Simplifying restriction: no memory allocation,
no local variables

Recall: Raw language semantics

Instrumented language semantics

Only the father can join his children.

Instrumented language semantics

Rules for interference:
Why

necessary?

Instrumented language semantics

Instrumented language semantics

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

The Rules (1)

consequence built in due to stability

Thread(E,P’) may not be stable, so can’t use frame rule; but
the stability of the postcondition follows from that of the
precondition

The Rules (2)

• Implicit assumption: any assertion is stable.

(so pr’s are trivially stable)

• Writes must be allowed.

The Rules (3)

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Soundness: Definitions

Includes interference steps

Soundness Theorems

• Local soundness:

• Global soundness:

Includes interference steps

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Example (ver 1)
{ full}

 t1 := fork (x := 1;)

 t2 := fork (x := 2;)

 join t1;

 x := 2;

 join t2;

{ x = 2 }

Example (ver 1)
{ full } { (full – T1) * T1 }

 t1 := fork (x := 1;)

{ (full – T1) * Thread(t1, T1) }

 t2 := fork (x := 2;)

{ (full – T1 – G2) * Thread(t1, T1) * Thread(t2, G2) }

 join t1;

{ (full – G2) * Thread(t2, G2) }

 x := 2;

{ ??? }

 join t2;

{ x = 2 }

T1 = [𝐱 ∶ 𝑍 → {1}]1
G2 = [𝐱 ∶ 𝑍 → {2}]1

{T1} x := 1 {T1}
{G2} x := 2 {G2}

Example (ver 1)
{ full } { (full – T1) * T1 }

 t1 := fork (x := 1;)

{ (full – T1) * Thread(t1, T1) }

 t2 := fork (x := 2;)

{ (full – T1 – G2 – G2) * Thread(t1, T1) * G2 * Thread(t2, G2) }

 join t1;

{ (full – G2 – G2) * G2 * Thread(t2, G2) }

 x := 2;

{ (full – G2 – G2) * G2 * Thread(t2, G2) * x = 2 }

 join t2;

{ x = 2 }

T1 = [𝐱 ∶ 𝑍 → {1}]1
G2 = [𝐱 ∶ 𝑍 → {2}]0.5𝑔

{G1} x := 1 {G1}
{G2} x := 2 {G2}

Need to check stability!

Example (ver 2)

Example (ver 2)

• Motivating example in the paper: R-G proof
requires auxiliary state!

• But same is true for D-G when we make a
simple change to previous example.

Example (ver 3)

x := 3; x := 2;

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Encoding R-G

See paper.

Outline

• Raw language semantics

• Permissions and their meaning

• Instrumented language semantics

• Logic rules

• Soundness

• Example

• Encoding of Rely-Guarantee

• Related work

Related Work

• Fork/join generally ignored

• Feng et al., Hobor et al.: no join, argue that
threads can synchronize explicitly. Not
compositional: interference must be specified
globally

• Gotsman et al. (storable locks): “this is achieved

by defining an invariant over protected sections of the
heap, which makes compositional reasoning about inter-
thread interference impossible”

