
Concurrent program logics
seminar

slides for 2011-05-09
(with tiny revisions)

Georg Neis

Last week: Early Papers

C.A.R. Hoare: An axiomatic basis for computer
programming. CACM 1969.

Susan Owicki, David Gries: An axiomatic proof technique for
parallel programs I. Acta Informatica 6, 319-340 (1976)

https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=owicki.pdf
https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=owicki.pdf

Review: Hoare Logic (1969)

• Very simple imperative language

• Axiomatic semantics

• Specification: P {C} Q

• Partial vs. total correctness

• Example:

• (Completeness)

Review: Owicki/Gries (1975)

• Extension of Hoare Logic to a concurrent language
(shared memory)

• New constructs:

• Key notion: interference freedom

• Relative completeness

Today: Rely-Guarantee

Viktor Vafeiadis: Modular fine-grained concurrency verification.
PhD thesis. Sections 2.2 and 2.3 only. (entire thesis)

Joey W. Coleman, Cliff B. Jones: A structural proof of the
soundness of rely/guarantee rules. Journal of Logic and

Computation 17: 807-841 (2007)

Leonor Prensa Nieto: The rely-guarantee method in
Isabelle/HOL. ESOP 2003.

https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=vthesis-rg.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf
http://homepages.cs.ncl.ac.uk/j.w.coleman/papers/colemanjones-rg-soundness.pdf
http://homepages.cs.ncl.ac.uk/j.w.coleman/papers/colemanjones-rg-soundness.pdf
https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=prensa.pdf
https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=prensa.pdf
https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=prensa.pdf
https://wiki.mpi-sws.org/star/cpl?action=AttachFile&do=view&target=prensa.pdf

Owicki/Gries not compositional

• “In a compositional proof system, the specification of a parallel program
can be derived from the specification of the components without
knowing the implementation of these components. This is important for
the correct development of complex programs, where one would like to
verify the design at stages where implementation details are still
unknown.” (Nieto)

• Owicki/Gries: need proofs of components to check non-
interference

• Jones: describe interference in the specification

Operational semantics
“In order to show that the inference rules used for (concurrent) program

constructs are sound, an independent semantics is needed.“ (Coleman/Jones)

Rely-guarantee conditions

• Interference becomes part of specification, in the
form of two binary relations:

• “R and G summarise the properties of the individual atomic
actions invoked by the environment (in the case of R) and the
thread itself (in the case of G).” (Vafeiadis)

Note: post-conditions are binary here

Partial vs. total correctness

*𝑃, 𝑅+ 𝐶 ⊩ sat (𝐺, 𝑄) means: If C is started in a state that satisfies P
and in an environment where each transition satisfies R, then:

• Coleman/Jones (total correctness)
1. Any of C’s transitions satisfies G, and

2. C terminates in a state that satisfies Q.

• Nieto, Vafeiadis (partial correctness)
1. Any of C’s transitions satisfies G, and

2. if C terminates, then in a state that satisfies Q.

• Noone (partial correctness, version 2)
1. If C terminates, then its transitions satisfy G and

2. its final state satisfies Q.

Rules for partial correctness (1)

the post-condition
should say R*, and G
must be reflexive

Rules for partial correctness (2)

Single-state vs. two-state post

“The rule for the await-statement is less obvious. By the semantics of the
await-command, a positive evaluation of the condition and the execution of
the body is done atomically. Thus, the state transition caused by the complete
execution of P must satisfy the guarantee condition. This is reflected in the
precondition and postcondition of P in the assumptions; since these are sets
of single states, the relation between the state before and after the
transformation is established by fixing the values of the first via a universally
quantified variable V.” (Nieto)

Rules for partial correctness (2)

Rules for partial correctness (3)

Stability of P&Q under interference

Vafeiadis

• Stability checked only at
rule for atomic blocks

• Pre-condition:

• Post-condition:

Coleman/Jones

• Stability implicitly assumed
everywhere?

• Pre-condition:

• Post-condition:

Stability of B under interference

• “It is important to note that this property alone is not sufficient to
establish that the test of a conditional construct such as If or While
still holds during the execution of that construct’s body;”
(Coleman/Jones)

• “Given the level of interference allowed in the language defined in

Section 2, we can either add a proof requirement that evaluation of
the b test is stable under R or we have to prove facts about the
body of the while statement (respectively, the embedded
statement of the if statement) without being able to take the b as
an extra pre condition.” (Coleman/Jones)

• No rule for assume by Vafeiadis; issue not discussed by Nieto.

Rules for If and While

Reflexivity and transitivity of R and G?

 “Jones *5+ first suggested that the rely and guarantee conditions be reflexive
and transitive. However, for the soundness proof only the reflexivity of the
guarantee condition is necessary. This is to ensure that transitions
corresponding to the evaluation of boolean conditions (which do not affect
the state) also satisfy the guarantee condition. If transitivity is also required
another property, namely, observational equivalence, can be proven. *…+ in
practice finding guarantee conditions that are transitive is not easy.” (Nieto)

I spotted transitivity of rely conditions being used in the Coleman/Jones proofs.

Example

pre: {1..ot-1} instead of len v
rely: what about oc?
guar: what about oc?
 different interpretation?

“Our interest is development; we have argued in
several publications that the steps of design
provide the outline proof of correctness. The formal
rules offer the ability to generate verification conditions and to use a theorem

prover if required. Proof rules for assignment statements
are therefore of less interest than those for the
combinators which let the designer decompose a
large task into sub-programs. In fact, in the absence
of complicated concepts like location sharing or
interference, assignments are unlikely to be
wrong.” (Coleman/Jones)

Nieto

• First formalization, done in Isabelle/HOL

• Number of parallel threads is parametric

• No nesting: each Pi in P1 || . . . || Pn must be a
sequential command

• Expression evaluation assumed to be atomic

• Post-conditions are single-state predicates

• Partial correctness

• System is complete (proof uses extended(?) O/G
as an intermediate stage)

Notes on completeness

“The rely/guarantee rules are intentionally incomplete: they model interference as
a relation, ignoring the environment’s control flow. Hence, they cannot directly prove
properties that depend on the environment’s control flow. Nevertheless, we can
introduce auxiliary variables to encode the implicit control flow constraints, and use
these auxiliary variables in the proof. Modulo introducing auxiliary variables,
rely/guarantee is complete. The various completeness proofs [68] introduce an auxiliary
variable that records the entire execution history. Of course, introducing such an auxiliary
variable has a global effect on the program to be verified. Therefore, the completeness
result does not guarantee that a modular proof can be found for every program.” (Vafeiadis)

The view that rules like those in [Jon96] are proved as needed contrasts starkly with
that of providing a (complete) axiomatic semantics for a language. The current authors
note that the only non-trivial language for which this has been done is “Turing”
[H+88]. Our view absolves us from concerns about completeness because one can
prove more rules as required. This is fortunate because rely/guarantee rules have to
fit many different styles of concurrent programming (depending on the intimacy of
interference employed) and it is difficult to envisage a single canonical set. (Coleman/Jones)

…

“The pre-condition P, a single-state predicate,
describes an assumption about the initial state
that must hold for the program to make sense.”
(Vafeiadis)

“Further discussion of the trade-offs in designing rely/guarantee rules
can be found in *CJ00+ which includes the useful idea of a “dynamic
invariant” that is not discussed further in the current paper.“ (Coleman/Jones)

“We do not enter here into a debate about the merits of operational versus
denotational semantics (but see [Jon03b]); we do, of course, avoid the Baroque
excesses caused by using what McCarthy called a “Grand State”.” (Coleman/Jones)

