
Concurrent Separation Logic

Beta Ziliani

Max Planck Institute for Software Systems (MPI-SWS)

May 23, 2011



Previously on CPL
Owicki/Gries (1975)

{P ∧ B}S{Q}
{P}await B then S{Q}

{P1}S1{Q1} . . . {Pn}Sn{Qn} are interference-free

{P1 ∧ . . . ∧ Pn}S1 ‖ . . . ‖ Sn{Q1 ∧ . . . ∧ Qn}

Interference-freedom is hard to prove and not composable.

Beta Ziliani Concurrent Separation Logic



Even more previously, but on life
Hoare (1972)

Symmetric Parallel Rule

{P1}S1{Q1} . . . {Pn}Sn{Qn} are disjoint

{P1 ∧ . . . ∧ Pn}S1 ‖ . . . ‖ Sn{Q1 ∧ . . . ∧ Qn}

Where disjointness is “they work with different data spaces”.
For shared resources, the following construct is added:

with
resource︷︸︸︷

r do S︸︷︷︸
critical region

Hoare, Towards a Theory of Parallel Programming

Beta Ziliani Concurrent Separation Logic



Walking over eggs

These systems statically ensure cautiousness.

Shared variables accessed only in critical regions.

Most concurrent systems are daring.

Semaphores example:

P(s)
critical code
V(s)

Rely/Guarantee allows this kind of
interactions.

Beta Ziliani Concurrent Separation Logic



Previously on CPL (2)
Separation Logic

Assertions P,Q extended with

x 7→ v

P1 ∗ P2

In {P}S{Q}:
“S can only access locations in the domain of P”

Frame rule:

{P}S{Q}
{P ∗ R}S{Q ∗ R}

Beta Ziliani Concurrent Separation Logic



Key ideas

Parallel rule:

{P1}S1{Q1} . . . {Pn}Sn{Qn}
{P1 ∗ . . . ∗ Pn}S1 ‖ . . . ‖ Sn{Q1 ∗ . . . ∗ Qn}

conditions

Resource invariants. From S. Owicki and D. Gries. Verifying
properties of parallel programs: An axiomatic approach.

Through the talk Owicki/Gries (O/G) mean this work.

Beta Ziliani Concurrent Separation Logic



Key ideas

In {P}S{Q}:
“S owns locations in the domain of P”

Ownership Hypothesis: A code fragment can access only
those portions of state that it owns.

Separation Property: At any time, the state can be
partitioned into that owned by each process and each
grouping of mutual exclusion.

The proof system will ensure this property.

Beta Ziliani Concurrent Separation Logic



Separation Conjunction
Separating a lot!

Par rule:

{P1}S1{Q1} . . . {Pn}Sn{Qn}
{P1 ∗ . . . ∗ Pn}S1 ‖ . . . ‖ Sn{Q1 ∗ . . . ∗ Qn}

where modify(Si ) ∩ FV(Pj ,Sj ,Qj) = ∅ for i 6= j

It is restrictive.

But has its uses.

Beta Ziliani Concurrent Separation Logic



Separation Conjunction
Mergesort

{array(a, i , j)}
procedure msort(a, i , j)

m := (i + j)/2;

if i < j then(
msort(a, i ,m) ‖ msort(a,m + 1, j)

)
;

merge(a, i ,m + 1, j);

{sorted(a, i , j)}

Beta Ziliani Concurrent Separation Logic



Separation Conjunction
Mergesort

We can split the array:

{array(a, i ,m) ∗ array(a,m + 1, j)}
{array(a, i ,m)} {array(a,m + 1, j)}(
msort(a, i ,m) ‖ msort(a,m + 1, j)

)
;

{sorted(a, i ,m)} {sorted(a,m + 1, j)}
merge(a, i ,m + 1, j)

{sorted(a, i , j)}

Beta Ziliani Concurrent Separation Logic



Language with CCRs (O/G)

init;

resource r1(variable list) . . . rm(variable list)

C1 ‖ . . . ‖ Cn

We said x belongs to r if it’s in r ’s list.

C ::= skip | x := E | x := [E ] | [E ] := E ′ | C1; C2

| i := cons(E0, . . . ,En) | dispose E

| if B then C1 else C2 | while B do C

| with r when B do C

Brookes uses a less restricted syntax.
Beta Ziliani Concurrent Separation Logic



Well-formedness

Restriction taken from Owicki/Gries to avoid interference:

1 a variable belongs at most to one resource;

2 if x belongs to r , it can only appear within a parallel process
inside a critical region for r ;

3 if x is changed in one process, it cannot appear in another
unless it belongs to a resource.

In the presence of pointers these rules are not enough! Consider

[x ] := 3 ‖ [y ] := 4

Separation conjunction will help us here.

Beta Ziliani Concurrent Separation Logic



Proof rules

Par rule not requiring looking at other’s code.

Each resource ri has a resource invariant Ii satisfying:

any command x := . . . where x ∈ FV(Ii ) must occur within a
critical region for ri .
In O/G they ask x to belong to ri .
Each Ii should be “precise” (to be defined).

Rule for a program:

{P}init{ I1 ∗ . . . ∗ Im ∗ P ′} {P ′}C1 ‖ . . . ‖ Cn{Q}
{P}
init;
resource r1(variable list) . . . rm(variable list)
C1 ‖ . . . ‖ Cn

{ I1 ∗ . . . ∗ Im ∗ Q}

Beta Ziliani Concurrent Separation Logic



Proof rules

Rule for critical region:

{(P ∗ Ii ) ∧ B}C{Q ∗ Ii}
{P}with ri when B do C{Q}

No other process modifies variables free in P or Q.

Brookes’s rules:

Γ, ri (X ) : Ii ` {P}C{Q}
{P ∗ Ii}resource ri in C{Q ∗ Ii}

if r 6∈ dom(Γ), X ∩ owned(Γ) = ∅, free(Ii ) ∩ owned(Γ) = ∅,
and Ii is precise. Where does X comes from?

Rule for erasing temporal variables.

Beta Ziliani Concurrent Separation Logic



Proof rules
Dijkstra dix it

Key point: there is “no interference from the outside”.

Process communication at explicit synchronization points.

Dijkstra: “apart from the (rare) moments of explicit
intercommunication, the individual processes are to be
regarded as completely independent from each other”.

Ownership Hypothesis is essential.

Well specified processes mind their own business.

Beta Ziliani Concurrent Separation Logic



Semaphores
Schema of a proof

...
...

{emp} {emp}
P(free); P(busy);
{10 7→ −} {10 7→ −}
[10] := m; ‖ n := [10] ;
{10 7→ −} {10 7→ −}
V(busy); V(free);
{emp} {emp}
...

...

Beta Ziliani Concurrent Separation Logic



Semaphores
Definitions

P(s) = with s when s > 0 do s := s − 1

V(s) = with s when true do s := s + 1

Is = (s = 0 ∧ emp) ∨ (s = 1 ∧ 10 7→ −)

{(A ∗ Is) ∧ s > 0}s := s − 1{A′ ∗ Is}
{A}P(s){A′}

{A ∗ Is}s := s + 1{A′ ∗ Is}
{A}V(s){A′}

Beta Ziliani Concurrent Separation Logic



Semaphores
Schema of a proof

...
...

{emp} {emp}
P(free); P(busy);
{10 7→ −} {10 7→ −}
[10] := m; ‖ n := [10] ;
{10 7→ −} {10 7→ −}
V(busy); V(free);
{emp} {emp}
...

...

Beta Ziliani Concurrent Separation Logic



Semaphores
Owning the heap

{(A ∗ Is) ∧ s > 0}s := s − 1{A′ ∗ Is}
{A}P(s){A′}

{
( A︷︸︸︷
emp ∗

( Ifree︷ ︸︸ ︷
(free = 0 ∧ emp) ∨ (free = 1 ∧ 10 7→ −)

))
∧ free > 0}

{free = 1 ∧ 10 7→ −}
free := free− 1
{free = 0 ∧ 10 7→ −}
{(free = 0 ∧ emp) ∗ 10 7→ −}
{
(
(free = 0 ∧ emp) ∨ (free = 1 ∧ 10 7→ −)

)
∗ 10 7→ −︸ ︷︷ ︸

A′

}

Beta Ziliani Concurrent Separation Logic



Semaphores
Initialization

{10 7→ −}
{10 7→ − ∗ emp}
free := 1; busy := 0;
{(free = 1 ∧ 10 7→ −) ∗ (busy = 0 ∧ emp)}
{
(
(free = 1 ∧ 10 7→ −) ∨ (free = 0 ∧ emp)

)
∗

∗
(
(busy = 1 ∧ 10 7→ −) ∨ (busy = 0 ∧ emp)

)
}

{Ifree ∗ Ibusy}

What if we set both to 1?

Beta Ziliani Concurrent Separation Logic



Ownership transfer

prog = . . . ;

 x := cons(a, b); ‖ get(y);
put(x) use(y);

dispose (y);


Where

put(x) , with buf when ¬full do c := x ; full := true

get(y) , with buf when full do y := c ; full := false

Prove that, either x is used and deallocated by the receiver,

or it is not used (nor deallocated) by the receiver.

As it should, it cannot prove x can be deallocated by the two
processes.

Beta Ziliani Concurrent Separation Logic



Logical garbage

We’d like to prove: {emp}prog{emp}
But we end up proving: {emp}prog{Ibuf}
Where Ibuf = (full ∧ c 7→ −,−) ∨ (¬full ∧ emp)

But we know ¬full, but we cannot leak it (soundness of with).

Remember:

{(P ∗ Ii ) ∧ B}C{Q ∗ Ii}
{P}with ri when B do C{Q}

No other process modifies variables free in P or Q.

(We use the magic address 10 before because of this.)

Who can save us now?

Beta Ziliani Concurrent Separation Logic



Super-semaphore!

Beta Ziliani Concurrent Separation Logic



Super-semaphore!
Idea

Add logical variables start and finish.

Ibuf =
(¬full ∧ start ∧ ¬finish ∧ emp)
∨(full ∧ ¬start ∧ ¬finish ∧ c 7→ −,−)
∨(¬full ∧ ¬start ∧ finish ∧ emp)

start modified by put, finish modified by get.
We can leak them out!

{emp}prog′{Ibuf ∗ (emp ∧ ¬start ∧ finish)}

Therefore getting

{emp}prog′{emp}

And then we erase them!

{emp}prog{emp}

Beta Ziliani Concurrent Separation Logic



Memory allocation

list x , (x = nil ∧ emp) ∨ (∃y .x 7→ −, y ∗ list y)

Im = list f

alloc(x , a, b) , with m when true do

if f = nil then x := cons(a, b)

else x := f ; f := x .2; x .1 := a; x .2 := b

dealloc(y) , with m when true do y .2 := f ; f := y

Proved under invariant list f :

{emp}alloc(x , a, b){x 7→ a, b}

{y 7→ −,−}dealloc(y){emp}

Beta Ziliani Concurrent Separation Logic



Composition

We can replace cons and dispose by alloc and dealloc in
our prog example:

prog = . . . ;

 alloc(x , a, b); ‖ get(y);
put(x) use(y);

dealloc(y);


Initialization requires the setup of both invariants:

full := false;

resource buf(c , full),m(f )

Once proved both invariants Ibuf and Im are set, the rest of
the proof is maintained.

Beta Ziliani Concurrent Separation Logic



Composition

Brookes’s is really composable... (unified language).

Key idea in rule for CCR:

{(P ∗ Ii ) ∧ B}C{Q ∗ Ii}
{P}with ri when B do C{Q}

No invariant needed in the conclusion!

Beta Ziliani Concurrent Separation Logic



Counting Semaphore Program

Chapter 10. Skipped for the sake of time.

Interesting remark: This logic does not allow for dynamic resource
allocation.

Are there logics with this capability?

Beta Ziliani Concurrent Separation Logic



Reynolds Counterexample

At the beginning we said “invariants should be precise”.

If not, then the system is incompatible with the rule

{P}C{Q} {P ′}C{Q ′}
{P ∧ P ′}C{Q ∧ Q ′}

Counterexample:

resource r()

Ir = true

C , with r when true do skip

Beta Ziliani Concurrent Separation Logic



Reynolds Counterexample

1 We derive {emp ∨ 10 7→ −}C{emp}:

{true}skip{true}
Skip

{(emp ∨ 10 7→ −) ∗ true}skip{emp ∗ true}
Conseq

{emp ∨ 10 7→ −}C{emp}
CCR

2 Then {10 7→ −}C{10 7→ −}:
{emp ∨ 10 7→ −}C{emp}

{emp}C{emp}
Conseq

{emp ∗ 10 7→ −}C{emp ∗ 10 7→ −}
Frame

{10 7→ −}C{10 7→ −}
Conseq

3 Then {10 7→ −}C{emp}:
{emp ∨ 10 7→ −}C{emp}
{10 7→ −}C{emp}

Conseq

Beta Ziliani Concurrent Separation Logic



Reynolds Counterexample

Applying the conjunction rule:

{10 7→ −}C{10 7→ −} {10 7→ −}C{emp}
{10 7→ − ∧ 10 7→ −}C{10 7→ − ∧ emp︸ ︷︷ ︸

false

}

Blame the invariant!

(Or the precondition, in O/G, but not valid in this setting).

Beta Ziliani Concurrent Separation Logic



Precise invariants

An invariant I is precise if for all states (s, h) there’s at most one
subheap h′ s.t.

h′ ⊆ h, (s, h)  I , (s, h′)  I

true is not precise...

Precise predicates let us split the heap in an unique way.

This is precisely what is needed to prove soundness!

Beta Ziliani Concurrent Separation Logic



Precise precise definition

From Viktor’s: P is precise iff ∀h1, h′
1, h2, h′

2,

def(h1 ∗ h2) and h1 ∗ h2 = h′
1 ∗ h′

2 and (s, h1)  P and (s, h′
1)  P

then h1 = h′
1.

Not so restrictive in practice:

P ::= emp | x 7→ E | (P∗P ′) | (P∧Q) | (Q∧P) | (B∧P)∨(B ′∧P ′)

Brookes say other definition is possible (with P and Q being
intuitionistic for Region and Resource, and just the precise part of
the heap is used in the hypotheses of these rules).

Beta Ziliani Concurrent Separation Logic



A few words on Viktor’s

I ` {P}C{Q}

State from I can be changed by other threads.

State P is owned by C .

I is maintained before, during, and after C .

Definition of safe: A program C is safe to run under invariant
I and precondition P, and will produce Q.

Simpler proof. Bakes the frame rule into the definition of safe.

Beta Ziliani Concurrent Separation Logic



And a few more

All proved in Isabelle.

Do not require abort semantics to prove soundness (in
contrast with Brookes).

Same proof for soundness without the conjunction rule or with
precise invariants.

Sharing read permissions!

{10 7→ −}x := [10] ‖ y := [10]{10 7→ −}

10 7→ − = 10 7→0.5 − ∗ 10 7→0.5 −.

Can only update if 10 7→1 −.

Soundness of RGSep also proved (stay tuned!)

Beta Ziliani Concurrent Separation Logic



Thanks!

Beta Ziliani Concurrent Separation Logic


