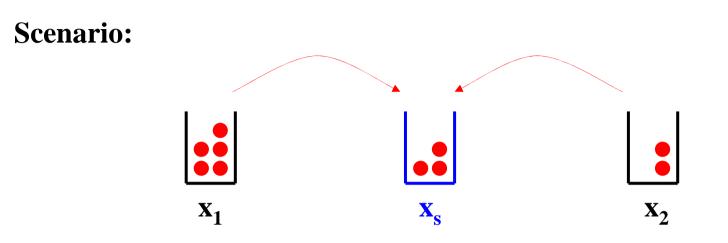
RGsep and Local Rely-Guarantee: An example

Arthur Charguéraud

Concurrent Program Logics Seminar

Max Planck Institute for Software Systems Kaiserslautern, 2011/07/04

Example: parallel increments



- the program starts with a pair of two natural numbers (n_1, n_2)
- the program allocates a shared memory cell and starts two threads
- the first thread has a private cell containing the value n_1
- the second created has a private cell containing the value n_2
- both threads do atomic unit transfer from their cell to the shared cell
- they stop when their private cell contains the value zero
- we want to prove that in the end the shared cell contains n_1+n_2

Initial situation

Initial state involves three variables: (only showing pre-conditions)

Emp; Emp; emp $|-(x1 \rightarrow n1) * (x2 \rightarrow n2) * (xs \rightarrow 0)$

rely, guarantee, and fence invariant

We then introduce auxiliary variables representing the number of transfers:

m1 = number of transfers made by thread 1m2 = number of transfers made by thread 2

Recall the rule for parallel+sharing

 $\begin{array}{c} (R \lor G_2) \ast G'_2; \ G_1 \ast G'_1; \ I \ast I' \vdash \{p_1 \ast m \ast r\} \ C_1 \ \{q_1 \ast m'_1 \ast r'_1\} \\ (R \lor G_1) \ast G'_1; \ G_2 \ast G'_2; \ I \ast I' \vdash \{p_2 \ast m \ast r\} \ C_2 \ \{q_2 \ast m'_2 \ast r'_2\} \\ \hline I \rhd \{R, G_1, G_2\} \quad I' \rhd \{G'_1, G'_2\} \quad r \lor r'_1 \lor r'_2 \Rightarrow I \quad m \lor m'_1 \lor m'_2 \Rightarrow I' \\ \hline R; \ G_1 \lor G_2; \ I \vdash \{p_1 \ast p_2 \ast m \ast r\} \ C_1 \parallel C_2 \ \{q_1 \ast q_2 \ast (m'_1 \land m'_2) \ast (r'_1 \land r'_2)\} \end{array} (\text{PAR-HIDE})$

→ for the parent, \mathbf{p}_1 and \mathbf{p}_2 and \mathbf{m} are private, and \mathbf{r} is shared → for the left branch, \mathbf{p}_1 is private and \mathbf{m} and \mathbf{r} are shared → for the right branch, \mathbf{p}_2 is private and \mathbf{m} and \mathbf{r} are shared → I is the fence for \mathbf{r} and I' is the fence for \mathbf{m}

Application of the rule on the example

Apply the par-hide rule to produce two subgoals:

R2; G1; I' |- { $(x1 \rightarrow n1-m1) * (xs \rightarrow m1+m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2)$ } P1 {... * (m1 = n1) } shared resource (r)

R1; G2; I' |- {(x2 \rightarrow n2-m2) * (xs \rightarrow m1+m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2)} P2 {... * (m2 = n2) }

Using the following instantiations:

sufficient to conclude that $xs \rightarrow n1+n2$ in the end

I = empty R = Empty

$$\mathbf{I'} = \exists m1. \exists m2. (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2)$$

$$G1 = R2 = \exists m1. (\exists m2. (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) \\ \rightarrow \exists m2. (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2))$$

G2 = **R1** = symmetrically defined

And checking the side-condition: I' > {R1,R2,G1,G2}

Bugfix: upper bound on the transfers

Apply the par-hide rule to produce two subgoals:

R2; G1; I' |- { $(x1 \rightarrow n1-m1) * (xs \rightarrow m1+m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) * (m1 \le n1)$ } P1 {... * (m1 = n1) } shared resource (r)

R1; G2; I' |- {(x2 \rightarrow n2-m2) * (xs \rightarrow m1+m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) * (m2 \leq n2)} P2 {... * (m2 = n2) }

Using the following instantiations:

sufficient to conclude that $xs \rightarrow n1+n2$ in the end

- I = empty
- **R** = **Empty**

$$\begin{array}{ll} I' & = \exists m1. \ \exists m2. \ (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) * (m1 \leq n1) * (m2 \leq n2) \\ G1 = R2 = \exists m1. \ (& \exists m2. \ (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) * (m2 \leq n2) \\ & \sim > \exists m2. \ (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2) * (m2 \leq n2) \end{array} \right)$$

G2 = **R1** = symmetrically defined

And checking the side-condition: I' > {R1,R2,G1,G2}

A weaker fence

Instead of a fence that captures a connection between xs, y1 and y2:

 $\mathbf{I'} = \exists m1. \ \exists m2. \ (xs \rightarrow m1 + m2) * (y1 \rightarrow m1) * (y2 \rightarrow m2)$

we can use a weaker invariant covering only the existence of the cells:

 $\mathbf{I'} = (\mathbf{xs} \to -) * (\mathbf{y1} \to -) * (\mathbf{y2} \to -)$

which is short for:

 $\mathbf{I'} = \exists ms.(xs \rightarrow ms) * \exists m1.(y1 \rightarrow m1) * \exists m2.(y2 \rightarrow m2)$

 \rightarrow Intuitively, the fence only needs to cover the footprint of the shared state.

Example in RG-sep

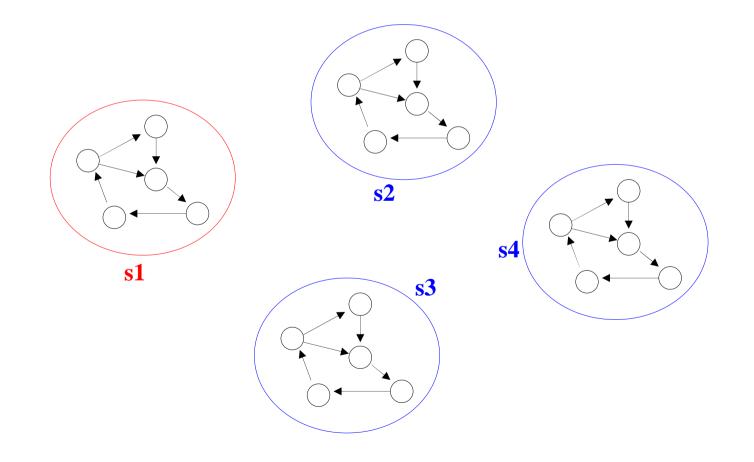
Apply the par rule to produce two subgoals:

where:

G2 = **R1** = symmetrically defined

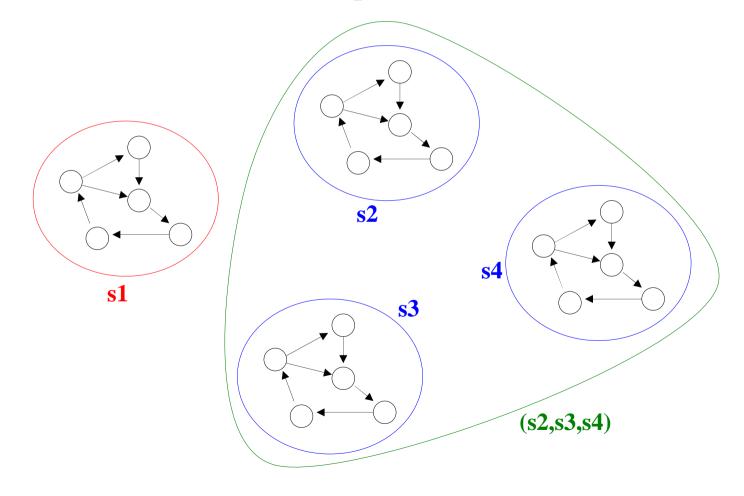
Rely-guarantee viewed as an automaton

View a concurrent system as an automaton (a state machine with transitions). Each thread correspond to a state of one automaton.



Rely-guarantee viewed as an automaton

View a concurrent system as an automaton (a state machine with transitions). Each thread correspond to a state of one automaton. The "context" of a thread is the product state of all the other threads.



Rely-guarantee viewed as an automaton

To verify one thread, we use:

- 1) an auxiliary variable to capture the state of this thread $(y1 \rightarrow m1)$
- 2) an auxiliary variable to capture the state of other threads $(y^2 \rightarrow m^2)$
- 3) a description of the private data $(x1 \rightarrow n1-m1)$
- 4) a description of the shared data $(xs \rightarrow m1+m2)$

Remarks:

- \rightarrow (2) corresponds to the product of the states of all the concurrent threads
- \rightarrow using (1) and (2) suffices to specify the state of the entire system
- \rightarrow the content of shared data (4) depends on the state of the entire system
- \rightarrow the content of the private data (3) may depend only on the local state (1) but in general it would also depend on the description of the global state (2)