RGsep and Local Rel§gfuarantee:
An example

Arthur Charguéeraud

Concurrent Program Logics Seminar

Max Planck Institute for Software Systems Kaisertgey 2011/07/04
1

Example: parallel increments

Scenario:

— the program starts with a pair of two natural narsi{n,n,)

— the program allocates a shared memory cell amt$ $¥eo threads
— the first thread has a private cell containingwhlele n

— the second created has a private cell contaihegaélue p

— both threads do atomic unit transfer from thelk toethe shared cell
— they stop when their private cell contains theigaero

— we want to prove that in the end the shared celtasns p+n,

Initial situation

Initial state involves three variables: (only showing pre-conditions)
Emp; Emp; emp |- (x1 - nl)OX2 - n2) O(xs - 0)

" rely, guarantee, and fence invariant

We then introduce auxiliary variables representivgnumber of transfers:
Emp; Emp; emp |- (x1 - n1-ml)O(x2 - n2-m2) (XS - m1+m2)
Oyl - ml) O(y2 - m2) O(m1<nl) O(m2<n2)

m1 = number of transfers made by thread 1
m2 = number of transfers made by thread 2

Recall the rule for parallel+sharing

(RVG2) xGh; G +Gs I+I" F{py=mx*r} Cy {qy*m] *ri}
(RVG1)*xG; Gox G IxI" +{pyxm=r} C {qaxmy *r)}
I>{R,G1,G2} TI'>{G,G,} rvrivr,=1 mvmi vm,=1T

- p ——— (PAR-HIDE)
R; G VG I {p1*prxmxr}Cy || Ca{qy *q2 = (m) Amy) (r] Ary)}

- for the parentp, andp, andm are private, and is shared
— for the left branchp, is private andn andr are shared

— for the right branchp, is private andn andr are shared
- | is the fence for andl' is the fence fom

Application of the rule on the example

Apply the par-hide rule to produce two subgoals:

R2; GL; I' |- {(x1 - n1-m1)0(xs - m1+m2)0(yl - ml) O(y2 - m2)} P1
- H(mi =ni)) " shared resourde)
R1, G2; I' |- {(x2 - n2-m2)0(xs - m1+m2)O(yl - ml) O(y2 - m2)} P2
{...0(mM2=n2)}

sufficient to conclude that

Using the following instantiations: %s nl+n2 in the end

I = empty
R = Empty
|' = [ml. On2. (Xxs - m1+m2)(yl - ml) O(y2 - m2)
Gl=R2=0ml.(0Om2. (xs - ml1+m2)0(yl - ml) O(y2 - m2)

~>[n2. (xs - m1+m2)d(yl - ml) O(y2 - m2))
G2 = R1 = symmetrically defined

And checking the side-condition:»{R1,R2,G1,G2}

Bugfix: upper bound on the transfers

Apply the par-hide rule to produce two subgoals:

R2; GL; I' |- {(x1 - n1-m1)0(xs - m1+m2)0(yl - ml) O(y2 - m2)d(ml<nl)} P1
- H(mi =ni) } " shared resource)

R1, G2; I' |- {(x2 - n2-m2) 0(xs - m1+m2)0(yl - ml) O(y2 - m2) O(m2<n2)} P2
{...0(m2=n2)}

sufficient to conclude that

Using the following instantiations: %s nl+n2 in the end

I = empty

R = Empty

|' =[ml. On2. (xs - m1+m2) 0yl - ml) O(y2 - m2) O(ml<nl) O(m2<n2)

Gl=R2=0Oml.(0Om2. (xs -> ml+m2)O(yl - ml)d(y2 - m2) O(m2< n2)
~>[n2. (xs - m1+m2)d(yl - ml) O(y2 - m2) O(m2<n2))

G2 = R1 = symmetrically defined

And checking the side-condition:»{R1,R2,G1,G2}

A weaker fence

Instead of a fence that captures a connection leeteey1andy2:

I' = Onl. On2. (xs > m1+m2)0(yl - ml) O(y2 - m2)

we can use a weaker invariant covering only theterce of the cells:
' = (xs - =) Oyl - =) O(y2 - -)

which is short for:
I' =[ms.(xs- ms) 0 Onl.(yl - ml) O On2.(y2 - m2)

- Intuitively, the fence only needs to cover the foott of the shared state.

Example in RGsep

Apply the par rule to produce two subgoals:

R2; G1 |- {(x1 - n1-m1)0[(xs - m1+m2)d(yl - ml)O(y2 - m2) O(m1l<nl)]} P1
{..0O0(m1=nl)}

R1; G2 |- {(x2 - n2-m2)[(xs - m1+m2)0(yl - ml) 0(y2 - m2) O(m2<n2)[} P2
{...0(m2=n2)}

where:

Gl=R2= (xs - m1l+m2)(yl - ml) 0(y2 - m2) O(m2<n2)
~>(xs - m1+m2)0d(yl - ml) O(y2 - m2) O(m2<n2)
G2=R1 = symmetrically defined

Rely-guarantee viewed as an automaton

View a concurrent system as an automaton (a stateaohine with
transitions). Each thread correspond to a state adne automaton.

Y
o G
ool T e
- S4 \\‘Q\
sl ? <3 (e
7
10,

Rely-guarantee viewed as an automaton

View a concurrent system as an automaton (a stateaohine with
transitions). Each thread correspond to a state adne automaton.

The "context" of a thread is the product state of #d the other threads.

10

Rely-guarantee viewed as an automaton

To verify one thread, we use:

1) an auxiliary variable to capture the state «f threadyl - ml)
2) an auxiliary variable to capture the state beothreadgy2 — m2)
3) a description of the private ddtdl - n1-ml)

4) a description of the shared d&ta— ml1+m?2)

Remarks:

- (2) corresponds to the product of the states dhallconcurrent threads
— using (1) and (2) suffices to specify the statéhefentire system
- the content of shared data (4) depends on thedtéte entire system

- the content of the private data (3) may depend onlthe local state (1)
but in general it would also depend on the desonptf the global state (2)

11

