
1

Max Planck Institute for Software Systems Kaiserslautern, 2011/07/04

Arthur Charguéraud

RGsep and Local Rely-Guarantee:
An example

Concurrent Program Logics Seminar

2

Example: parallel increments
Scenario:

x1 x2xs

– the program starts with a pair of two natural numbers (n1,n2)

– the program allocates a shared memory cell and starts two threads

– the first thread has a private cell containing the value n1
– the second created has a private cell containing the value n2
– both threads do atomic unit transfer from their cell to the shared cell

– they stop when their private cell contains the value zero

– we want to prove that in the end the shared cell contains n1+n2

3

Initial situation
(only showing pre-conditions)

Emp; Emp; emp |- (x1 →→→→ n1) ∗∗∗∗ (x2 →→→→ n2) ∗∗∗∗ (xs →→→→ 0)

Emp; Emp; emp |- (x1 →→→→ n1-m1) ∗∗∗∗ (x2 →→→→ n2-m2) ∗∗∗∗ (xs →→→→ m1+m2)

∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m1 ≤≤≤≤ n1) ∗∗∗∗ (m2 ≤≤≤≤ n2)

We then introduce auxiliary variables representing the number of transfers:

Initial state involves three variables:

rely, guarantee, and fence invariant

m1 = number of transfers made by thread 1

m2 = number of transfers made by thread 2

4

Recall the rule for parallel+sharing

→ for the parent, p1 and p2 and m are private, and r is shared

→ for the left branch,p1 is private and m and r are shared

→ for the right branch, p2 is private and m and r are shared

→ I is the fence for r and I' is the fence for m

5

Application of the rule on the example

R2; G1; I' |- {(x1 →→→→ n1-m1) ∗∗∗∗ (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2)} P1
{... ∗∗∗∗ (m1 = n1) }

R1; G2; I' |- {(x2 →→→→ n2-m2) ∗∗∗∗ (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2)} P2
{... ∗∗∗∗ (m2 = n2) }

Apply the par-hide rule to produce two subgoals:

I = empty
R = Empty

I' = ∃∃∃∃m1. ∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2)

G1 = R2 = ∃∃∃∃m1. (∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2)
~> ∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2))

G2 = R1 = symmetrically defined

Using the following instantiations:

And checking the side-condition: I' ►{R1,R2,G1,G2}

sufficient to conclude that
xs →→→→ n1+n2 in the end

shared resource(r)

6

Bugfix: upper bound on the transfers

R2; G1; I' |- {(x1 →→→→ n1-m1) ∗∗∗∗ (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m1 ≤≤≤≤ n1)} P1
{... ∗∗∗∗ (m1 = n1) }

R1; G2; I' |- {(x2 →→→→ n2-m2) ∗∗∗∗ (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2)} P2
{... ∗∗∗∗ (m2 = n2) }

Apply the par-hide rule to produce two subgoals:

I = empty
R = Empty

I' = ∃∃∃∃m1. ∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m1 ≤≤≤≤ n1) ∗∗∗∗ (m2 ≤≤≤≤ n2)

G1 = R2 = ∃∃∃∃m1. (∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2)
~> ∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2))

G2 = R1 = symmetrically defined

Using the following instantiations:

And checking the side-condition: I' ►{R1,R2,G1,G2}

sufficient to conclude that
xs →→→→ n1+n2 in the end

shared resource (r)

7

A weaker fence

I' = ∃∃∃∃m1. ∃∃∃∃m2. (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2)

Instead of a fence that captures a connection between xs, y1andy2:

we can use a weaker invariant covering only the existence of the cells:
I' = (xs →→→→ –) ∗∗∗∗ (y1 →→→→ –) ∗∗∗∗ (y2 →→→→ –)

I' = ∃∃∃∃ms.(xs →→→→ ms) ∗∗∗∗ ∃∃∃∃m1.(y1 →→→→ m1) ∗∗∗∗ ∃∃∃∃m2.(y2 →→→→ m2)

which is short for:

→ Intuitively, the fence only needs to cover the footprint of the shared state.

8

Example in RG-sep

R2; G1 |- {(x1 →→→→ n1-m1) ∗∗∗∗ [(xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m1 ≤≤≤≤ n1)]} P1
{... ∗∗∗∗ (m1 = n1) }

R1; G2 |- {(x2 →→→→ n2-m2) ∗∗∗∗ [(xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2)]} P2
{... ∗∗∗∗ (m2 = n2) }

Apply the par rule to produce two subgoals:

G1 = R2 = (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2)

~> (xs →→→→ m1+m2) ∗∗∗∗ (y1 →→→→ m1) ∗∗∗∗ (y2 →→→→ m2) ∗∗∗∗ (m2 ≤≤≤≤ n2)
G2 = R1 = symmetrically defined

where:

9

Rely-guarantee viewed as an automaton
View a concurrent system as an automaton (a state machine with
transitions). Each thread correspond to a state of one automaton.

s1

s2

s4

s3

10

Rely-guarantee viewed as an automaton
View a concurrent system as an automaton (a state machine with
transitions). Each thread correspond to a state of one automaton.
The "context" of a thread is the product state of all the other threads.

s1

s2

s4

s3

(s2,s3,s4)

11

Rely-guarantee viewed as an automaton
To verify one thread, we use:

1) an auxiliary variable to capture the state of this thread (y1 →→→→ m1)

2) an auxiliary variable to capture the state of other threads (y2 →→→→ m2)

3) a description of the private data (x1 →→→→ n1-m1)
4) a description of the shared data (xs→→→→ m1+m2)

Remarks:

→ (2) corresponds to the product of the states of all the concurrent threads

→ using (1) and (2) suffices to specify the state of the entire system

→ the content of shared data (4) depends on the state of the entire system

→ the content of the private data (3) may depend only on the local state (1)
but in general it would also depend on the description of the global state (2)

