RGsep and Local Rel§guarantee

Arthur Charguéraud

Concurrent Program Logics Seminar

Max Planck Institute for Software Systems Kaiserglen 2011/06/30
1

Overview

Separation Logic Rely Guarantee

— local reasoning (frame) — global reasoning
— NO concurrency — transitions (pairs of states)

Concurrent Separation Logic
— Invariants on shared resources

— lots of auxiliary variables

SAGL RGSep

— shared and private parts — two layers of assertions

— primitive commands atomic — box P for a shared resource
— lacks standard frame rule — private resources are local

Local Rely Guarantee

—rely and guarantees are local

— single-layer assertion language
— uses invariant-fence actions

Plan of this talk

— RGSep specification language
— Interference

— Stability

— RGSep reasoning rules

— LRG specification language

— LRG invariant-fenced actions

— LRG reasoning rules

RG-sep assertion language

The logic is made of a layer built on top of Sepatan Logic (SL):

p,q7r i=P||P||pxg|pAq|pVg|Tz.p| Ve p

P,Q,S::=false |emp |e=¢"|e— € |Fz.P|P=Q|P*xQ|P—®Q

- "box P" denotes a shared resource described bygredmate P

— boxes always occur in positive position in assarfamulae
- "p" interpreted as a triple (l,s,1): local statkared state, logical state

Interpretation of separating conjunction in the outer layer:
— multiplicative over local state: P [Q denotes disjoint union

— additive over shared state: [P] U[Q] is defined as [PQ]
*— box

Observe that POQ can be interpreted using either of the two stars
- this is not a problem because the two interpratadi@ equivalent

Recall RelyGuarantee

Form of the judgment:

R; G |- {p} C {q} also written C sat (p,R,G,q)

—Cis a command

— R Is a relation describing the interference causetheyenvironrment
— G is a relation describing how the command changesitiared state
—p andg are the pre- and post-conditions for local and shatates

Question 1: how to express a rely/guarantee relatmousing SL?

Question 2: how to check that pre/post-conditionsra stable w.r.t. rely?

Examp|e: ~ Csat (P {}.{}.Q) (-F_’ ~ Q) C G |Q]stable under R
- (atomic{C'}) sat (R, G'.)

Description of interference

The modification of a piece of shared state is daswed by an action:
P[> Q

- Interpreted as a binary relation over states, @dfas the set of pairs of

state of the fornfh, U h, h, U hy) whereh, satisfiesP andh,, satisfiesQ.

(ignore the valuation of the logical variables tioe time being)

A rely R or a guaranteeG is represented as a set of actions.

- Interpreted as the set of pairs that belong to¢flexive-transitive
closure of the binary relations associated withatkons in the set.

An action P[> Q is allowed by a guaranteds when
(P>Q) O G

— meaning that the relation described by the acsanaluded in the
relation described by the guarantee

Other rules for establishing interference

e PsQel
T Y~ T Y C G G-EXACT T ok Q C a G=AX
i Sr G BaSwG2ECgpg ihad TSR
Prx P~ Q1xQ2CG Ple/z] ~ Qle/z| C G
/ w0 C G Ear O (B s (O F) C:C
Fsp, P=P P~ QCG FsnL Q=Q¢ R _)T C-COoFRM

Example for Cons:if the action(x — even) ~> (X— —) in the premise is
allowed by the guarantég then the actiofx —» 6) ~> (X —» 3) in the
conclusion is also allowed by the guararGedecause the latter is an
action that is a particular case of the former.

Analysis of CoFrm: if the action(PLF) ~> ((IF) in the premise is allowed
by the guarante®, then the actio® ~> Qin the conclusion is also allowed
by the guarante®, because an action that chanBasto Q and leaves all
the rest unchanged can also be viewed as an doabohangeBLF into

QLF and leaves all the rest unchanged.

Description of stability for SL assertions

Stability of a SL assertion with respect to a relyrelation over states):
sem_stable(P,R) also written PR==—>P

- Interpretation: ith satisfiesP, and if the transitioigh,h') belongs tdR,
thenh' also satisfie$.

Syntactic technique for establishing stability of & assertions:

sem_stable(P, [| BQ,, ..., P,>Q, |])
. .
= [, sem_stable(P, [| E>Q; [[) relation that corresponds to the

- O, (P.-O0P)0Q)=P Intepretation of the set of actions
! I |
-~ P, - P describes a heap such that there exists anothprshagafyingP,
such that if we take the disjoint union of both thsult satisfie®

— Intuitively, we start fronP, removeP, then addQ, and we should gd? .

Description of stability for RGSep assertions

Stability of a RGSep assertion with respect to a te:

p stable under R

— Definition: (recall tha p.q.r == P lpxq|pAq|pVq|3e.p|Ve.p)
— P stable under R always holds
—[P] stable under R Iff sem_stable(P,R)

— pl*p2 stable under R iff pl stable under Randp2 stable under R
.. and similarly for other constructors

- Interpretation: _
local state, shared state, logical state
— assume stable under Rolds -

— assume the stafks,i) satisfiesp, that is,(I,s,i) [= p
—assume'is a shared state such tigs')J R
Then the statd,s',i) also satisifiep, that is,(l,s',) [= p

Towards a rule for atomic commands

A simple (and limited) version of the rule for atomc commands:

- Csat (P,{},{},Q) (P~ Q)CG |Q|stable under R
— (atomic{C'}) sat (|P|, R,G,|Q)|)

- the shared statésandQ becomes private state inside the atomic section
- the transitiorP [»> Q made on the shared state must satisfy the guarantee
- the new post-conditio@ needs to be stable under the rely

The CONCUR'O7 paper includes a generalized versioof this rules that
— adds the possiblity to modify only a portion o¢ thared state

— adds the possibility for the atomic section toessahe local state

— allow to pull existential quantifiers out from tekared state

10

Rules for atomic commands

Vafeiadis' dissertation instead includes two more ppmitive rules

(1) - (C) sat (p,0,G.q)
p stable under R ¢ stable under R

(ATOoMR)
- (C) sat (p,R,G,q)

- the pre- and post- condition of the atomic sectiostnme stable undét
- In such a case, the rely can be made empty innhlyas of the section

not needed if we don't include the conjunction rule

/

@ PQprlisc FCsat (P=P0.0.05Q) (P=QCG
- (C)sat (P F)x P,0,G, Q= F|xQ)

(ATOM)
- the shared statésandQ becomes private state inside the atomic section
- the transitiorP [> Q made on the shared state must satisfy the guarantee

- the shared stateis not involved in the analysis of the atomic sattio
11

Other interesting rules

*) Rule for commands that do not access the sharedate:

Fou {P} ¢ {Q}
~csat (P R,G,Q)

(PRrIM)

*) Frame rule:
- Csat (p,R,G,q) r stable under (R U)
FCsat (pxr,R.G,q*r)
- if r mentions the shared state, then it must be stadolerunterference

(FRAME)

*) Parallel
) — Cysat (p1, RUGS, Gy, q1)

= C2 sat (])21 RU Gl: GQ: (}2)
— (C1]|Cy) sat (py *x po, R, Gy U Gs, q1 % ¢2)

- C, can undergo interference from the environniéjtand from the

other threadG,) —recall that the rely of one is the guarantee efdtner.

Overview of the soundness proof for RGSep

1) Model a heap as a partial commutative cancediatonoid
2) Model a structured heapas a triple: local, shared, and environment states
3) Interpret each comand as a binary relation beaps

4) Introduce a small-step reduction relation anteotavith a set of possible
Interference; reduction steps are annotated widglba indicating whether the
action is that of the program or that of the envment

5) Define (C, g, R) guard, G to express that the execution®fn a states
under possible interferenéesatisfies the guarantégfor at leasn steps

6) Define|= C sat (p,R,G,Q) to express that for arfy' [IR, the execution of
C In a statao satisfyingp under possible intereferenBe satisfies the
garanteds for an arbitrary number of steps, ilén, (C, o, R) guard, G,
and, if the command terminates, the final resulsfas the post-conditio

7) Soundness theorem:|4fC sat (p,R,G,Q) then |= C sat (p,R,G,Q)

13

LRG: motivation

Goal is to allow rely and guarantees to be local ta sub-computation:
— ability to hide from a computation the shared veses that it does not use
— ability to declare a rely and a guarantee loaallg given computation

— It is in fact necessary to support local declarsiof rely and guarantees
for reasoning about dynamically-allocated sharechorg cells

Technical ingredient #1: give a meaning t&R[R' and G’

- alla'ls interpreted as the set of pairs of the fghmU h,, h;' I h,’)
where(h,, h;) is a pair in the interpretation of the actmand(h,, h,’) is a
pair in the interpretation of the actiah

Technical ingredient #2: invariant-fenced actions

— It Is needed for deriving that, stable under g andp, stable under g
implies(p, Up,) stable under (g Ua,) --notation in the paper is "Sta(p,a)"

Technical ingredient #3. coming back to a single-kger logic

14

Language of actions in LRG

An action a is a syntactic object whose interpretation, writterj|al], is a
set of pairs of states. (A rely is an action, and guarantee is an action.)

q = " here "action" can be "an atomic action" or "a $etations"

—p~>q pairs of heap whose fst satisfiggind snd satisfieg (same ap < g)
—[p] preserves a heap that satisfieshe heap cannot change at all)
—alla' disjoint union of two actions, as explained earlier

—[k.a used to quantify logical variables in actions (detailed here)

Inclusion between actionsa = a' holds if the set of pairs denoted by the
actiona s included in the set of pairs denotedabythat is,[|a|] U [|a'|]

Useful shorthands:
—Emp the empty action takes empty heap to empty heagmp~>emp
—1d the identity action takes any heap to itself, [trele]

—True the true action takes any heap to any othertrue.~> true
15

Stability in LRG

Definition: p stable undera ---written in the paper "Sta(p,a)"

< for any staté satisfyingp, for any pain(h,h') that belongs to the
Interpretation of the actiom, the statdr' also satisfie®.

To frame out parts of the rely/garantee, we need result of the form:
If p, stable underaandp, stable under ghen(p, LIp,) stable under (dla,)

— but this result is incorrect without appropriatéesconditions
— examplep, describes a memory cell angdis an action over that cell

Before looking for a side-condition that will makethe result become
correct, let's see why we need this result for thigame rule to work.

16

Towards a frame rule

The shape of the frame rule that we are looking for

R,G |- {p} C {q} m stable under R’

RR'; GG |- {p[n} C {qm} (ignore G' for now)

— The intuition of the frame rule is that if we hawe proof of the first
premise then we redo this proof with a larger $eésources and relies.

- However, deny-guarantee reasoning involves sidditons of the form
p stable under R

-~ So, if we want to redo the proof in a context egahwithm resources
andR'guarantees, we need to shpwn stable under RR".

Intuitively, we need to enforce the fact thaR' only contains actions that
are specific tom (things would go wrong ifR' talked about data inp)

17

Fences on actions

A fence is used to give a precise boundary to éinrgeso that we can know
for sure that an action does not refer to a resooutside this boundary

Definition: an action a is fenced by an invariantl, written | » a, iff
—1| Is precise, that is, any state has at most one sstate satisfying|
— the actiona covers the preservation of a state satisfying i.e.[l] = a
—| holds over begin and end state of any transition ig, i.e.a= (I~>I)

- Typically, a is a rely or a garantee, so we wirieR or| PG
— Moreover, we writd »{R,G} for the conjunction of two such facts

Example: R = (X - ListL)~> [A. (X - List A::L)
G=(X - ListL) ~> [B. Q. (L=B::Q Ox - List Q)
| = [L.X - ListL

18

Composition with a fenced action

We have the following (asymmetric!) lemma:

If p, stable under@gnd p, stable underaand p,= 1 and | P»a,
then (p, Up,) stable under (@la,))

|%a\1<p1 P,

/3\2‘

Proof that " p, is stable undera,":

- the begin and end of transitionsapsatisfy|
- p, Is disjoint fromp,, and sincep, satisfiesl, we havep, disjoint from|
- thus, the action o, (insidel) does not affeqb, (disjoint froml)

Proof that " p, is stable undera,":

-~ a, anda, have disjoint begin and end states

- the begin and end of transitionsapsatisfy!|

- thus, the transitions ia, only affect states that are disjoint frdm

- sincep, satisfies, we therefore conclude thatis not affected bya,

19

Back to the frame rule

Recall: R,G|-{p} C{gq} m stable under R’

RIR' GG’ |- {ptim} C {q[in}

In order to redo the proof in a context extendeith wi resources ang’
guarantees, we waptstable under B imply pLim stable under BR".

According to the lemma we have just seen, it sufies to find an
invariant | suchthat m=1 and | »R’

- In other words, we need that the framed resonreatisfies a precise
iInvariantl such that:

— R'contains only transitions whose begin state andseaté satisfy
— andR' contains the identity transition over states satgf|

20

Judgment extended with invariants

The precise invariants (e.gl) now play a role in the reasoning. The
judgment needs to be extended to:

R; G; I |-{p} C {a}

- R andG andl are only used to specify the shared state
— P andq specify the whole state

The system enforces two properties:

— R andG are fenced by the invariahtthat is,| » R andl » G

- the shared state jmandq is covered by the invarianf sop = | [irue
g => I* true

Interestingly, the invariant does not receive asl mterpretation in the
final soundness theorem. It's only used in the lamjustifying the
correctness of the frame and hide rules.

21

Frame rule

Frame rule to frame out a shared resource r:

R.G;I+{p)C g} Sta(nR) I'>{R.,G'} r=1T
R+«R'; GG, I+I" v {pxr} C{g=r)}

(FR-SHARE)

Traditional frame rule for local state:

R, G; I+{p}C{q}
R, G; I-{pxr}Clg=r]

(FR-PRIVATE)

General rule that covers both cases:

R. G I+{p}Clgq} Sta(r,R'xIld) I'>{R',G'} r= 1 xtrue
R*R’;G*G’;[*]’I—{p*T}C{q*T}

(FRAME)

22

Hide rule

The hiding rule allows to convert a resource from pvate to shared

R«R', GxG"; I«I" +{p} C{q} I>{R, G}
R, G, I+{p}C {q}

(HIDE)

— The resources fromthat are described ihare shared in the premise,

but are private in the conclusion, becaBsandG do not mention them.

(This is becausk andG can only mention resources that are covered by the
iInvariantl, andl' is disjoint froml.)

- Really, this rule should be called differently (etge "share" rule)

23

Rule for local computations

Rules for reasoning on code that does not involveng shared state:

{p} C g}
Emp; Emp; emp + {p} C {g}

(ENV)

Version combined with the frame rule for shared reeurces:

{p}C{q} Sta(r,RxIld) I>{R,G} r= Ixtrue
R,G; I+{p=r} C{qg=r]

(ENV-SHARE)

24

Rule for atomic

Simple version for non-guarded atomic blocs:
{p} C{q} (p~>q)= GLlrue (plg)= IOrue p,q stable under R*Id

R; G; I |- {p} atomic(C) {q}

- In the atomic, all the resources can be considerée private

- the premis@~>q = GLITrue ensures that the transition on the shared
state executed by the commabdatisfies one of the guarantees, that is, we
can decompose = pdpl andg = gdgl such tha{ps~>qs=>G

(the latter corresponds (p~>q)LG in RGSep)

- the premise = I*true ensures that the shared state in the pre-condition
p satisfies the invariant Thetrue part is used to cover private resources. A
similar premise is used for the post-conditgpn

- the stability side conditions are used to checktt@shared part qf
andq are stable undd®. Theld action is used to cover private resources.

25

Rule for parallel

Rule for parallel:

RVGy,G1:I-{p1*r}Ci{q1*r1} RVG: Gy IH{py*r}Colgr*r2} rvriVrm =1 I>R
R: Gy VG I+{pyxpa*r} Cy | C2{q1 *q2*(ry Ar)}

(PAR)
— equivalent to the standard rule, with extra wellifedness premises

Version combined with hiding:

(RVG2) xGh; G +Gs I+I" F{py=mx*r} Cy {qy*m] *ri}
(RVG1)xG 5 GaxGh; IxI F{pyxmxr} Co {qa=m, * 1)}
I>{R,G1,G>)} I’D{G"I,sz} r\/r‘i\/ri_'zzﬂ m\/n-z’i\/m’zzﬂ’

- - ——— (PAR-HIDE)
R; G VG I {p1*prxmxr}Cy || Ca{qy *q2 = (m) Amy) (r] Ary)}

- for the parentp, andp, andm are private, and is shared
- for the left branchp, is private andn andr are shared

— for the right branchp, is private andn andr are shared
- | Is the fence for andl' is the fence fom

26

Rule of consequence

Rule of consequence:

p=>p R=2R G=>G" g=>¢ R,G It+ip]Cigl p’vg = I «true I'>{R' .G’}
RAGH TF 0" Clg')

(CSQ)

— as usual, on a given judgment, we may strength@nweakemn

- Similarly, on a given judgment, we may reduce tdRs(we have
completed a proof assuming the context could bg wierous, but now we
only need to assume the context to be a littleouis) or enlarg& (we have
completed a proof showing that the program only esak small number of
possible transitions, but now we are happy to asdinat the program is
making a larger number of possible transitions).

- well-formedness side conditions are also included

27

Soundness of LRG

Established using a somewhat similar technique arm RGSep.

Note that the conjunction rule is sound in the sysim.

28

Open questions

Completeness of LRG for compositional verificationis there a formal
definition of "truely compositional concurrent pragn logic"?

Interest of the rule of conjunction: | have never felt the need for additive
conjunction/disjunction while verifying sequentmbgrams. Can we
always do without it for verifying concurrent pragns?

Relation to CSL.: the related work section of LRG conjectures that CS
can be viewed as a special version of LRG. Doasni@an that we'll never
hear about CSL again?

Relation to RGSep:by avoiding a two-layer logic, LRG seems to improve
over RGSep. Yet, LRG imposes a precision requirémenhe fences.
When does this lead to the need for additionalleuyivariables? Would
this really a problem in practice for mechanizeogbs?

29

Bibliography

— A Marriage of Rely/Guarantee and Separation Logic.

Viktor Vafeiadis, Matthew J. Parkinson. CONCUR 2007.

— Modular fine-grained concurrency verification.
Viktor Vafeiadis. PhD thesis. Chapter 3.

— Local rely-guarantee reasoning
Xinyu Feng POPL 2009

30

