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Overview
Separation Logic
– local reasoning (frame)
– no concurrency

Rely Guarantee
– global reasoning
– transitions (pairs of states)

Concurrent Separation Logic
– invariants on shared resources
– lots of auxiliary variables

Local Rely Guarantee
– rely and guarantees are local
– single-layer assertion language
– uses invariant-fence actions

SAGL
– shared and private parts
– primitive commands atomic
– lacks standard frame rule

RGSep
– two layers of assertions
– box P for a shared resource
– private resources are local
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Plan of this talk

– RGSep specification language

– Interference

– Stability

– RGSep reasoning rules

– LRG specification language

– LRG invariant-fenced actions

– LRG reasoning rules
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RG-sep assertion language
The logic is made of a layer built on top of Separation Logic (SL):

→ "box P" denotes a shared resource described by heap prediate P

→ boxes always occur in positive position in assertion formulae

→ "p" interpreted as a triple (l,s,i): local state, shared state, logical state

Interpretation of separating conjunction in the outer layer:

– multiplicative over local state: P ∗ Q denotes disjoint union

– additive over shared state: [P] ∗ [Q] is defined as [P∧Q]

Observe that P ∗∗∗∗ Q can be interpreted using either of the two stars

→ this is not a problem because the two interpretation are equivalent

box 
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Recall Rely-Guarantee
Form of the judgment:

R; G |- {p} C {q} also written C sat (p,R,G,q)

– C is a command

– R is a relation describing the interference caused by the environment

– G is a relation describing how the command changes the shared state

– p andq are the pre- and post-conditions for local and shared states

Question 1: how to express a rely/guarantee relation using SL?

Question 2: how to check that pre/post-conditions are stable w.r.t. rely?

Example:
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Description of interference
The modification of a piece of shared state is described by an action:

P ∼ ∼ ∼ ∼> Q

→ interpreted as a binary relation over states, defined as the set of pairs of 
state of the form(hp ⊕ ⊕ ⊕ ⊕ hf, hq ⊕⊕⊕⊕ hf) wherehp satisfiesP andhq satisfiesQ.

A rely R or a guarantee G is represented as a set of actions.

→ interpreted as the set of pairs that belong to the reflexive-transitive 
closure of the binary relations associated with the actions in the set.

An action  P ∼ ∼ ∼ ∼> Q  is allowed by a guarantee G when
(P ∼ ∼ ∼ ∼> Q)  ⊆ ⊆ ⊆ ⊆ G

→ meaning that the relation described by the action is included in the 
relation described by the guarantee

(ignore the valuation of the logical variables for the time being)
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Other rules for establishing interference

Example for Cons: if the action(x → even) ~> (x → –) in the premise is 
allowed by the guarantee G, then the action (x → 6) ~> (x → 3) in the 
conclusion is also allowed by the guarantee G, because the latter is an 
action that is a particular case of the former.

Analysis of CoFrm: if the action (P∗F) ~> (Q∗F) in the premise is allowed 
by the guarantee G, then the action P ~> Q in the conclusion is also allowed 
by the guarantee G, because an action that changes P into Q and leaves all 
the rest unchanged can also be viewed as an action that changes P∗F into 
Q∗F and leaves all the rest unchanged.
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Description of stability for SL assertions
Stability of a SL assertion with respect to a rely (relation over states):

sem_stable(P,R) also written P;R ==> P

→ interpretation: if h satisfiesP, and if the transition (h,h') belongs to R, 
then h' also satisfies P.

Syntactic technique for establishing stability of SL assertions:

sem_stable(P, [| P1∼∼∼∼>Q1, ..., Pn∼∼∼∼>Qn |] )

⇔⇔⇔⇔ ∀∀∀∀i,  sem_stable(P, [| Pi∼∼∼∼>Qi |])

⇔⇔⇔⇔ ∀∀∀∀i,  ((Pi –⊗⊗⊗⊗ P) ∗∗∗∗ Qi) ⇒⇒⇒⇒ P

relation that corresponds to the
intepretation of the set of actions

→ Pi –⊗⊗⊗⊗ P describes a heap such that there exists another heap satisfyingPi
such that if we take the disjoint union of both the result satisfies P

→ intuitively, we start from P, remove Pi then add Qi and we should get P 



9

Description of stability for RGSep assertions
Stability of a RGSep assertion with respect to a rely:

p stable under R

→→→→ Definition: (recall that                                                   )

– P stable under R always holds

– [P] stable under R iff sem_stable(P,R)

– p1*p2 stable under R iff p1 stable under Rand p2 stable under R
... and similarly for other constructors

→→→→ Interpretation:
– assume p stable under Rholds

– assume the state (l,s,i) satisfies p, that is, (l,s,i) |= p 

– assume s' is a shared state such that (s,s') ∈ R

Then the state (l,s',i) also satisifies p, that is, (l,s',i) |= p 

local state, shared state, logical state
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Towards a rule for atomic commands
A simple (and limited) version of the rule for atomic commands:

→ the shared states P andQ becomes private state inside the atomic section

→ the transition P ∼ ∼ ∼ ∼> Q made on the shared state must satisfy the guarantee

→ the new post-condition Q needs to be stable under the rely R

The CONCUR'07 paper includes a generalized version of this rules that 
– adds the possiblity to modify only a portion of the shared state
– adds the possibility for the atomic section to access the local state
– allow to pull existential quantifiers out from the shared state
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Rules for atomic commands
Vafeiadis' dissertation instead includes two more primitive rules

→ the pre- and post- condition of the atomic section must be stable under R

→ in such a case, the rely can be made empty in the analysis of the section

→ the shared states P andQ becomes private state inside the atomic section 

→ the transition P ∼ ∼ ∼ ∼> Q made on the shared state must satisfy the guarantee

→ the shared state F is not involved in the analysis of the atomic section

(1)

(2)

not needed if we don't include the conjunction rule
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Other interesting rules
*) Rule for commands that do not access the shared state:

→ if r mentions the shared state, then it must be stable under interference

*) Frame rule:

*) Parallel rule:

→ C1 can undergo interference from the environment (R) and from the 
other thread(G2) –recall that the rely of one is the guarantee of the other.
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Overview of the soundness proof for RGSep
1) Model a heap as a partial commutative cancellative monoid

2) Model a structured heap σσσσ as a triple: local, shared, and environment states

3) Interpret each comand as a binary relation over heaps

4) Introduce a small-step reduction relation annotated with a set of possible 
interference; reduction steps are annotated with a label indicating whether the 
action is that of the program or that of the environment

5) Define  (C, σ σ σ σ, R) guardn G  to express that the execution of C in a state σσσσ
under possible interference R satisfies the guarantee G for at leastn steps

6) Define |= C sat (p,R,G,Q) to express that for any R'⊆⊆⊆⊆R, the execution of 
C in a state σσσσ satisfying p under possible intereference R' satisfies the 
garantee G for an arbitrary number of steps, i.e. ∀∀∀∀n, (C, σ σ σ σ, R) guardn G, 
and, if the command terminates, the final result satisfies the post-conditionQ

7) Soundness theorem: if |- C sat (p,R,G,Q) then  |= C sat (p,R,G,Q)
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LRG: motivation
Goal is to allow rely and guarantees to be local to a sub-computation:
– ability to hide from a computation the shared resources that it does not use

– ability to declare a rely and a guarantee locally in a given computation

→ it is in fact necessary to support local declarations of rely and guarantees 
for reasoning about dynamically-allocated shared memory cells

Technical ingredient #1: give a meaning to R∗∗∗∗R' and G∗∗∗∗G' 
→ a ∗∗∗∗ a' is interpreted as the set of pairs of the form(h1 ⊕ ⊕ ⊕ ⊕ h2, h1' ⊕⊕⊕⊕ h2') 
where(h1, h1') is a pair in the interpretation of the action a and (h2, h2') is a 
pair in the interpretation of the action a' 

Technical ingredient #2: invariant-fenced actions

→ it is needed for deriving that p1 stable under a1 andp2 stable under a2
implies (p1 ∗∗∗∗ p2) stable under (a1 ∗∗∗∗ a2)   --notation in the paper is "Sta(p,a)"

Technical ingredient #3: coming back to a single-layer logic
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Language of actions in LRG

a ::=
– p~>q pairs of heap whose fst satisfies p and snd satisfiesq

– [p] preserves a heap that satisfiesp (the heap cannot change at all)

– a ∗∗∗∗ a' disjoint union of two actions, as explained earlier

– ∃∃∃∃x.a used to quantify logical variables in actions (not detailed here)

Useful shorthands:
– Emp the empty action takes empty heap to empty heap, i.e. emp~>emp

– Id the identity action takes any heap to itself, i.e. [true]
– True the true action takes any heap to any other, i.e. true ~> true

(same as           )

Inclusion between actions: a ⇒⇒⇒⇒ a' holds if the set of pairs denoted by the 
actiona is included in the set of pairs denoted by a', that is, [|a|] ⊆⊆⊆⊆ [|a'|]

An action a is a syntactic object whose interpretation, written [|a|], is a 
set of pairs of states. (A rely is an action, and a guarantee is an action.)

here "action" can be "an atomic action" or "a set of actions"
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Stability in LRG
Definition: p stable under a ---written in the paper "Sta(p,a)"

⇔ for any state h satisfyingp, for any pair (h,h') that belongs to the 
interpretation of the action a, the state h' also satisfies P.

To frame out parts of the rely/garantee, we need a result of the form:

if p1 stable under a1 andp2 stable under a2 then (p1 ∗ p2) stable under (a1 ∗ a2)

→ but this result is incorrect without appropriate side-conditions 

→ example: p1 describes a memory cell and a2 is an action over that cell

Before looking for a side-condition that will make the result become 
correct, let's see why we need this result for the frame rule to work.
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Towards a frame rule
The shape of the frame rule that we are looking for:

R∗∗∗∗R'; G ∗∗∗∗G' |- {p∗∗∗∗m} C {q∗∗∗∗m} 

R,G |- {p} C {q} m stable under R'

→ The intuition of the frame rule is that if we have the proof of the first 
premise then we redo this proof with a larger set of resources and relies. 

→ However, deny-guarantee reasoning involves side conditions of the form 
p stable under R. 

→ So, if we want to redo the proof in a context extended with m resources 
and R' guarantees, we need to show p∗m stable under R∗R'. 

Intuitively, we need to enforce the fact that R' only contains actions that 
are specific to m (things would go wrong if R' talked about data in p)

(ignore G' for now)
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Fences on actions
A fence is used to give a precise boundary to an action, so that we can know 
for sure that an action does not refer to a resource outside this boundary

→ Typically, a is a rely or a garantee, so we write I ►R or I ►G
→ Moreover, we writeI ►{R,G} for the conjunction of two such facts

Definition: an action a is fenced by an invariant I , written I ►a, iff

– I is precise, that is, any state has at most one sub-state satisfying I

– the action a covers the preservation of a state satisfying I , i.e. [I] ⇒⇒⇒⇒ a
– I holds over begin and end state of any transition in a, i.e. a⇒⇒⇒⇒ (I~>I)

Example: R = (x →→→→ List L) ~> ∃∃∃∃A. (x →→→→ List A::L)
G = (x →→→→ List L) ~> ∃∃∃∃B. ∃∃∃∃Q. (L = B::Q  ∗ ∗ ∗ ∗ x →→→→ List Q)

I = ∃∃∃∃L. x →→→→ List L
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Composition with a fenced action

if  p1 stable under a1 and p2 stable under a2 and p1⇒⇒⇒⇒ I and I ►a1

then  (p1 ∗ p2) stable under (a1 ∗ a2)

We have the following (asymmetric!) lemma:

Proof that " p2 is stable under a1":

→ the begin and end of transitions in a1 satisfy I

→ p2 is disjoint from p1, and since p1 satisfies I, we have p2 disjoint fromI

→ thus, the action of a1 (inside I) does not affect p2 (disjoint from I)

Proof that " p1 is stable under a2":

→ a1 anda2 have disjoint begin and end states 

→ the begin and end of transitions in a1 satisfy I

→ thus, the transitions ina2 only affect states that are disjoint from I

→ since p1 satisfies I, we therefore conclude that p1 is not affected by a2

I p1a1 a2p2



20

Back to the frame rule

R∗∗∗∗R'; G ∗∗∗∗G' |- {p∗∗∗∗m} C {q∗∗∗∗m} 

R,G |- {p} C {q} m stable under R'

In order to redo the proof in a context extended with m resources and R'
guarantees, we want p stable under Rto imply p∗m stable under R∗R'. 

Recall:

According to the lemma we have just seen, it suffices to find an
invariant I such that m ⇒⇒⇒⇒ I  and I ►R'

→ In other words, we need that the framed resource m satisfies a precise 
invariant I such that:

– R' contains only transitions whose begin state and end state satisfy I

– and R' contains the identity transition over states satisfying I
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Judgment extended with invariants

The precise invariants (e.g. I ) now play a role in the reasoning. The 
judgment needs to be extended to:

R; G; I  |- {p} C {q}

→ R and G andI are only used to specify the shared state

→ p and q specify the whole state

The system enforces two properties:

→ R and G are fenced by the invariant I , that is,I ►R and I ►G

→ the shared state in p and q is covered by the invariant I , sop ⇒⇒⇒⇒ I∗∗∗∗true
q => I* true

Interestingly, the invariant does not receive any real interpretation in the 
final soundness theorem. It's only used in the lemmas justifying the 
correctness of the frame and hide rules.
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Frame rule
Frame rule to frame out a shared resource r:

Traditional frame rule for local state:

General rule that covers both cases:
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Hide rule
The hiding rule allows to convert a resource from private to shared

→ The resources from p that are described in I' are shared in the premise, 
but are private in the conclusion, because R and G do not mention them. 
(This is because R and G can only mention resources that are covered by the 
invariant I, and I' is disjoint from I.)

→ Really, this rule should be called differently (e.g., the "share" rule)
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Rule for local computations

Rules for reasoning on code that does not involve any shared state:

Version combined with the frame rule for shared resources:
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Rule for atomic
Simple version for non-guarded atomic blocs:

R; G; I |- {p} atomic(C) {q} 

{p} C {q} p,q stable under R*Id(p~>q) ⇒⇒⇒⇒ G∗∗∗∗True (p∨∨∨∨q) ⇒⇒⇒⇒ I∗∗∗∗true

→ In the atomic, all the resources can be considered to be private

→ the premisep~>q ⇒⇒⇒⇒ G∗∗∗∗True ensures that the transition on the shared 
state executed by the command C satisfies one of the guarantees, that is, we 
can decompose p = ps∗∗∗∗pl and q = qs∗∗∗∗ql such that (ps~>qs)⇒⇒⇒⇒G
(the latter corresponds to(p~>q)⊆⊆⊆⊆G in RGSep)

→ the premise p ⇒⇒⇒⇒ I*true ensures that the shared state in the pre-condition 
p satisfies the invariant I . The true part is used to cover private resources. A 
similar premise is used for the post-condition q.

→ the stability side conditions are used to check that the shared part of p
and q are stable under R. The Id action is used to cover private resources.
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Rule for parallel

Rule for parallel:

Version combined with hiding:

→ equivalent to the standard rule, with extra well-formedness premises

→ for the parent, p1 and p2 and m are private, and r is shared

→ for the left branch,p1 is private and m and r are shared

→ for the right branch, p2 is private and m and r are shared

→ I is the fence for r and I' is the fence for m
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Rule of consequence

Rule of consequence:

→ as usual, on a given judgment, we may strengthen p or weaken q

→ similarly, on a given judgment, we may reduce the set R (we have 
completed a proof assuming the context could be very vicious, but now we 
only need to assume the context to be a little vicious) or enlarge G (we have 
completed a proof showing that the program only makes a small number of 
possible transitions, but now we are happy to assume that the program is 
making a larger number of possible transitions).

→ well-formedness side conditions are also included
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Soundness of LRG
Established using a somewhat similar technique as in RGSep.

Note that the conjunction rule is sound in the system.
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Open questions
Completeness of LRG for compositional verification:is there a formal 
definition of "truely compositional concurrent program logic"?

Interest of the rule of conjunction: I have never felt the need for additive 
conjunction/disjunction while verifying sequential programs. Can we  
always do without it for verifying concurrent programs?

Relation to CSL: the related work section of LRG conjectures that CSL 
can be viewed as a special version of LRG. Does this mean that we'll never 
hear about CSL again?

Relation to RGSep: by avoiding a two-layer logic, LRG seems to improve 
over RGSep. Yet, LRG imposes a precision requirement on the fences. 
When does this lead to the need for additional auxiliary variables? Would 
this really a problem in practice for mechanized proofs?
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