
1

Max Planck Institute for Software Systems Kaiserslautern, 2011/06/30

Arthur Charguéraud

RGsep and Local Rely-Guarantee

Concurrent Program Logics Seminar



2

Overview
Separation Logic
– local reasoning (frame)
– no concurrency

Rely Guarantee
– global reasoning
– transitions (pairs of states)

Concurrent Separation Logic
– invariants on shared resources
– lots of auxiliary variables

Local Rely Guarantee
– rely and guarantees are local
– single-layer assertion language
– uses invariant-fence actions

SAGL
– shared and private parts
– primitive commands atomic
– lacks standard frame rule

RGSep
– two layers of assertions
– box P for a shared resource
– private resources are local



3

Plan of this talk

– RGSep specification language

– Interference

– Stability

– RGSep reasoning rules

– LRG specification language

– LRG invariant-fenced actions

– LRG reasoning rules



4

RG-sep assertion language
The logic is made of a layer built on top of Separation Logic (SL):

→ "box P" denotes a shared resource described by heap prediate P

→ boxes always occur in positive position in assertion formulae

→ "p" interpreted as a triple (l,s,i): local state, shared state, logical state

Interpretation of separating conjunction in the outer layer:

– multiplicative over local state: P ∗ Q denotes disjoint union

– additive over shared state: [P] ∗ [Q] is defined as [P∧Q]

Observe that P ∗∗∗∗ Q can be interpreted using either of the two stars

→ this is not a problem because the two interpretation are equivalent

box 



5

Recall Rely-Guarantee
Form of the judgment:

R; G |- {p} C {q} also written C sat (p,R,G,q)

– C is a command

– R is a relation describing the interference caused by the environment

– G is a relation describing how the command changes the shared state

– p andq are the pre- and post-conditions for local and shared states

Question 1: how to express a rely/guarantee relation using SL?

Question 2: how to check that pre/post-conditions are stable w.r.t. rely?

Example:



6

Description of interference
The modification of a piece of shared state is described by an action:

P ∼ ∼ ∼ ∼> Q

→ interpreted as a binary relation over states, defined as the set of pairs of 
state of the form(hp ⊕ ⊕ ⊕ ⊕ hf, hq ⊕⊕⊕⊕ hf) wherehp satisfiesP andhq satisfiesQ.

A rely R or a guarantee G is represented as a set of actions.

→ interpreted as the set of pairs that belong to the reflexive-transitive 
closure of the binary relations associated with the actions in the set.

An action  P ∼ ∼ ∼ ∼> Q  is allowed by a guarantee G when
(P ∼ ∼ ∼ ∼> Q)  ⊆ ⊆ ⊆ ⊆ G

→ meaning that the relation described by the action is included in the 
relation described by the guarantee

(ignore the valuation of the logical variables for the time being)



7

Other rules for establishing interference

Example for Cons: if the action(x → even) ~> (x → –) in the premise is 
allowed by the guarantee G, then the action (x → 6) ~> (x → 3) in the 
conclusion is also allowed by the guarantee G, because the latter is an 
action that is a particular case of the former.

Analysis of CoFrm: if the action (P∗F) ~> (Q∗F) in the premise is allowed 
by the guarantee G, then the action P ~> Q in the conclusion is also allowed 
by the guarantee G, because an action that changes P into Q and leaves all 
the rest unchanged can also be viewed as an action that changes P∗F into 
Q∗F and leaves all the rest unchanged.



8

Description of stability for SL assertions
Stability of a SL assertion with respect to a rely (relation over states):

sem_stable(P,R) also written P;R ==> P

→ interpretation: if h satisfiesP, and if the transition (h,h') belongs to R, 
then h' also satisfies P.

Syntactic technique for establishing stability of SL assertions:

sem_stable(P, [| P1∼∼∼∼>Q1, ..., Pn∼∼∼∼>Qn |] )

⇔⇔⇔⇔ ∀∀∀∀i,  sem_stable(P, [| Pi∼∼∼∼>Qi |])

⇔⇔⇔⇔ ∀∀∀∀i,  ((Pi –⊗⊗⊗⊗ P) ∗∗∗∗ Qi) ⇒⇒⇒⇒ P

relation that corresponds to the
intepretation of the set of actions

→ Pi –⊗⊗⊗⊗ P describes a heap such that there exists another heap satisfyingPi
such that if we take the disjoint union of both the result satisfies P

→ intuitively, we start from P, remove Pi then add Qi and we should get P 



9

Description of stability for RGSep assertions
Stability of a RGSep assertion with respect to a rely:

p stable under R

→→→→ Definition: (recall that                                                   )

– P stable under R always holds

– [P] stable under R iff sem_stable(P,R)

– p1*p2 stable under R iff p1 stable under Rand p2 stable under R
... and similarly for other constructors

→→→→ Interpretation:
– assume p stable under Rholds

– assume the state (l,s,i) satisfies p, that is, (l,s,i) |= p 

– assume s' is a shared state such that (s,s') ∈ R

Then the state (l,s',i) also satisifies p, that is, (l,s',i) |= p 

local state, shared state, logical state



10

Towards a rule for atomic commands
A simple (and limited) version of the rule for atomic commands:

→ the shared states P andQ becomes private state inside the atomic section

→ the transition P ∼ ∼ ∼ ∼> Q made on the shared state must satisfy the guarantee

→ the new post-condition Q needs to be stable under the rely R

The CONCUR'07 paper includes a generalized version of this rules that 
– adds the possiblity to modify only a portion of the shared state
– adds the possibility for the atomic section to access the local state
– allow to pull existential quantifiers out from the shared state



11

Rules for atomic commands
Vafeiadis' dissertation instead includes two more primitive rules

→ the pre- and post- condition of the atomic section must be stable under R

→ in such a case, the rely can be made empty in the analysis of the section

→ the shared states P andQ becomes private state inside the atomic section 

→ the transition P ∼ ∼ ∼ ∼> Q made on the shared state must satisfy the guarantee

→ the shared state F is not involved in the analysis of the atomic section

(1)

(2)

not needed if we don't include the conjunction rule



12

Other interesting rules
*) Rule for commands that do not access the shared state:

→ if r mentions the shared state, then it must be stable under interference

*) Frame rule:

*) Parallel rule:

→ C1 can undergo interference from the environment (R) and from the 
other thread(G2) –recall that the rely of one is the guarantee of the other.



13

Overview of the soundness proof for RGSep
1) Model a heap as a partial commutative cancellative monoid

2) Model a structured heap σσσσ as a triple: local, shared, and environment states

3) Interpret each comand as a binary relation over heaps

4) Introduce a small-step reduction relation annotated with a set of possible 
interference; reduction steps are annotated with a label indicating whether the 
action is that of the program or that of the environment

5) Define  (C, σ σ σ σ, R) guardn G  to express that the execution of C in a state σσσσ
under possible interference R satisfies the guarantee G for at leastn steps

6) Define |= C sat (p,R,G,Q) to express that for any R'⊆⊆⊆⊆R, the execution of 
C in a state σσσσ satisfying p under possible intereference R' satisfies the 
garantee G for an arbitrary number of steps, i.e. ∀∀∀∀n, (C, σ σ σ σ, R) guardn G, 
and, if the command terminates, the final result satisfies the post-conditionQ

7) Soundness theorem: if |- C sat (p,R,G,Q) then  |= C sat (p,R,G,Q)



14

LRG: motivation
Goal is to allow rely and guarantees to be local to a sub-computation:
– ability to hide from a computation the shared resources that it does not use

– ability to declare a rely and a guarantee locally in a given computation

→ it is in fact necessary to support local declarations of rely and guarantees 
for reasoning about dynamically-allocated shared memory cells

Technical ingredient #1: give a meaning to R∗∗∗∗R' and G∗∗∗∗G' 
→ a ∗∗∗∗ a' is interpreted as the set of pairs of the form(h1 ⊕ ⊕ ⊕ ⊕ h2, h1' ⊕⊕⊕⊕ h2') 
where(h1, h1') is a pair in the interpretation of the action a and (h2, h2') is a 
pair in the interpretation of the action a' 

Technical ingredient #2: invariant-fenced actions

→ it is needed for deriving that p1 stable under a1 andp2 stable under a2
implies (p1 ∗∗∗∗ p2) stable under (a1 ∗∗∗∗ a2)   --notation in the paper is "Sta(p,a)"

Technical ingredient #3: coming back to a single-layer logic



15

Language of actions in LRG

a ::=
– p~>q pairs of heap whose fst satisfies p and snd satisfiesq

– [p] preserves a heap that satisfiesp (the heap cannot change at all)

– a ∗∗∗∗ a' disjoint union of two actions, as explained earlier

– ∃∃∃∃x.a used to quantify logical variables in actions (not detailed here)

Useful shorthands:
– Emp the empty action takes empty heap to empty heap, i.e. emp~>emp

– Id the identity action takes any heap to itself, i.e. [true]
– True the true action takes any heap to any other, i.e. true ~> true

(same as           )

Inclusion between actions: a ⇒⇒⇒⇒ a' holds if the set of pairs denoted by the 
actiona is included in the set of pairs denoted by a', that is, [|a|] ⊆⊆⊆⊆ [|a'|]

An action a is a syntactic object whose interpretation, written [|a|], is a 
set of pairs of states. (A rely is an action, and a guarantee is an action.)

here "action" can be "an atomic action" or "a set of actions"



16

Stability in LRG
Definition: p stable under a ---written in the paper "Sta(p,a)"

⇔ for any state h satisfyingp, for any pair (h,h') that belongs to the 
interpretation of the action a, the state h' also satisfies P.

To frame out parts of the rely/garantee, we need a result of the form:

if p1 stable under a1 andp2 stable under a2 then (p1 ∗ p2) stable under (a1 ∗ a2)

→ but this result is incorrect without appropriate side-conditions 

→ example: p1 describes a memory cell and a2 is an action over that cell

Before looking for a side-condition that will make the result become 
correct, let's see why we need this result for the frame rule to work.



17

Towards a frame rule
The shape of the frame rule that we are looking for:

R∗∗∗∗R'; G ∗∗∗∗G' |- {p∗∗∗∗m} C {q∗∗∗∗m} 

R,G |- {p} C {q} m stable under R'

→ The intuition of the frame rule is that if we have the proof of the first 
premise then we redo this proof with a larger set of resources and relies. 

→ However, deny-guarantee reasoning involves side conditions of the form 
p stable under R. 

→ So, if we want to redo the proof in a context extended with m resources 
and R' guarantees, we need to show p∗m stable under R∗R'. 

Intuitively, we need to enforce the fact that R' only contains actions that 
are specific to m (things would go wrong if R' talked about data in p)

(ignore G' for now)



18

Fences on actions
A fence is used to give a precise boundary to an action, so that we can know 
for sure that an action does not refer to a resource outside this boundary

→ Typically, a is a rely or a garantee, so we write I ►R or I ►G
→ Moreover, we writeI ►{R,G} for the conjunction of two such facts

Definition: an action a is fenced by an invariant I , written I ►a, iff

– I is precise, that is, any state has at most one sub-state satisfying I

– the action a covers the preservation of a state satisfying I , i.e. [I] ⇒⇒⇒⇒ a
– I holds over begin and end state of any transition in a, i.e. a⇒⇒⇒⇒ (I~>I)

Example: R = (x →→→→ List L) ~> ∃∃∃∃A. (x →→→→ List A::L)
G = (x →→→→ List L) ~> ∃∃∃∃B. ∃∃∃∃Q. (L = B::Q  ∗ ∗ ∗ ∗ x →→→→ List Q)

I = ∃∃∃∃L. x →→→→ List L



19

Composition with a fenced action

if  p1 stable under a1 and p2 stable under a2 and p1⇒⇒⇒⇒ I and I ►a1

then  (p1 ∗ p2) stable under (a1 ∗ a2)

We have the following (asymmetric!) lemma:

Proof that " p2 is stable under a1":

→ the begin and end of transitions in a1 satisfy I

→ p2 is disjoint from p1, and since p1 satisfies I, we have p2 disjoint fromI

→ thus, the action of a1 (inside I) does not affect p2 (disjoint from I)

Proof that " p1 is stable under a2":

→ a1 anda2 have disjoint begin and end states 

→ the begin and end of transitions in a1 satisfy I

→ thus, the transitions ina2 only affect states that are disjoint from I

→ since p1 satisfies I, we therefore conclude that p1 is not affected by a2

I p1a1 a2p2



20

Back to the frame rule

R∗∗∗∗R'; G ∗∗∗∗G' |- {p∗∗∗∗m} C {q∗∗∗∗m} 

R,G |- {p} C {q} m stable under R'

In order to redo the proof in a context extended with m resources and R'
guarantees, we want p stable under Rto imply p∗m stable under R∗R'. 

Recall:

According to the lemma we have just seen, it suffices to find an
invariant I such that m ⇒⇒⇒⇒ I  and I ►R'

→ In other words, we need that the framed resource m satisfies a precise 
invariant I such that:

– R' contains only transitions whose begin state and end state satisfy I

– and R' contains the identity transition over states satisfying I



21

Judgment extended with invariants

The precise invariants (e.g. I ) now play a role in the reasoning. The 
judgment needs to be extended to:

R; G; I  |- {p} C {q}

→ R and G andI are only used to specify the shared state

→ p and q specify the whole state

The system enforces two properties:

→ R and G are fenced by the invariant I , that is,I ►R and I ►G

→ the shared state in p and q is covered by the invariant I , sop ⇒⇒⇒⇒ I∗∗∗∗true
q => I* true

Interestingly, the invariant does not receive any real interpretation in the 
final soundness theorem. It's only used in the lemmas justifying the 
correctness of the frame and hide rules.



22

Frame rule
Frame rule to frame out a shared resource r:

Traditional frame rule for local state:

General rule that covers both cases:



23

Hide rule
The hiding rule allows to convert a resource from private to shared

→ The resources from p that are described in I' are shared in the premise, 
but are private in the conclusion, because R and G do not mention them. 
(This is because R and G can only mention resources that are covered by the 
invariant I, and I' is disjoint from I.)

→ Really, this rule should be called differently (e.g., the "share" rule)



24

Rule for local computations

Rules for reasoning on code that does not involve any shared state:

Version combined with the frame rule for shared resources:



25

Rule for atomic
Simple version for non-guarded atomic blocs:

R; G; I |- {p} atomic(C) {q} 

{p} C {q} p,q stable under R*Id(p~>q) ⇒⇒⇒⇒ G∗∗∗∗True (p∨∨∨∨q) ⇒⇒⇒⇒ I∗∗∗∗true

→ In the atomic, all the resources can be considered to be private

→ the premisep~>q ⇒⇒⇒⇒ G∗∗∗∗True ensures that the transition on the shared 
state executed by the command C satisfies one of the guarantees, that is, we 
can decompose p = ps∗∗∗∗pl and q = qs∗∗∗∗ql such that (ps~>qs)⇒⇒⇒⇒G
(the latter corresponds to(p~>q)⊆⊆⊆⊆G in RGSep)

→ the premise p ⇒⇒⇒⇒ I*true ensures that the shared state in the pre-condition 
p satisfies the invariant I . The true part is used to cover private resources. A 
similar premise is used for the post-condition q.

→ the stability side conditions are used to check that the shared part of p
and q are stable under R. The Id action is used to cover private resources.



26

Rule for parallel

Rule for parallel:

Version combined with hiding:

→ equivalent to the standard rule, with extra well-formedness premises

→ for the parent, p1 and p2 and m are private, and r is shared

→ for the left branch,p1 is private and m and r are shared

→ for the right branch, p2 is private and m and r are shared

→ I is the fence for r and I' is the fence for m



27

Rule of consequence

Rule of consequence:

→ as usual, on a given judgment, we may strengthen p or weaken q

→ similarly, on a given judgment, we may reduce the set R (we have 
completed a proof assuming the context could be very vicious, but now we 
only need to assume the context to be a little vicious) or enlarge G (we have 
completed a proof showing that the program only makes a small number of 
possible transitions, but now we are happy to assume that the program is 
making a larger number of possible transitions).

→ well-formedness side conditions are also included



28

Soundness of LRG
Established using a somewhat similar technique as in RGSep.

Note that the conjunction rule is sound in the system.



29

Open questions
Completeness of LRG for compositional verification:is there a formal 
definition of "truely compositional concurrent program logic"?

Interest of the rule of conjunction: I have never felt the need for additive 
conjunction/disjunction while verifying sequential programs. Can we  
always do without it for verifying concurrent programs?

Relation to CSL: the related work section of LRG conjectures that CSL 
can be viewed as a special version of LRG. Does this mean that we'll never 
hear about CSL again?

Relation to RGSep: by avoiding a two-layer logic, LRG seems to improve 
over RGSep. Yet, LRG imposes a precision requirement on the fences. 
When does this lead to the need for additional auxiliary variables? Would 
this really a problem in practice for mechanized proofs?



30

Bibliography

– A Marriage of Rely/Guarantee and Separation Logic. 
Viktor Vafeiadis, Matthew J. Parkinson. CONCUR 2007.

– Modular fine-grained concurrency verification.
Viktor Vafeiadis. PhD thesis. Chapter 3.

– Local rely-guarantee reasoning. 
Xinyu Feng. POPL 2009.


