
Acta Informatica 6, 319--340 (1976)
�9 by Springer-Verlag 1976

An Axiomatic Proof Technique for Parallel Programs I*

Susan Owicki and David Gries

Received November 6, t975

Summary. A language for parallel programming, with a primitive construct for
synchronization and mutual exclusion, is presented. Hoare's deductive system for
proving partial correctness of sequential programs is extended to include the paral-
lelism described by the language. The proof method lends insight into how one should
underst~,nd and present parallel programs. Examples are given using several of the
standard problems in the literature. Methods for proving termination and the absence
of deadlock are also given.

1. Introduction

The importance of correctness proofs for sequential programs has long been
recognized. Advocates of structured programming have argued that a well struc-
tured program should be easy to prove correct, and tha t programs should be
written with a correctness proof in mind. In this connection, Hoare 's deductive
system [9], using axioms, inference rules and assertions, has been the most in-
fluential. Not only has Hoare shown us how to prove programs correct, his de-
ductive system has shown us how to understand programs in an informal manner,
and has given us insight into how to write bet ter programs.

The need for correctness proofs for parallel programs is even greater. When
several processes can be executed in parallel, the results can depend on the un-
predictable order in which actions from different processes are executed, resulting
in a complexity too great to handle informally. Even worse, program testing
will rarely uncover all mistakes since the particular interactions in which errors
a r e visible may not occur. A proof method is required which teaches us how to
handle parallelism in a simple, understandable manner.

A number of methods have been used in proofs for parallel programs. The
most common is reliance on informal a rguments - -a risky business given the com-
plexity of parallel program interactions. More formal approaches have included
application of Scott 's mathematical semantics (Cadiou and Levy [3]), Lipton's
reduction method [14], and Rosen's Church-Rosser approach [17].

This paper, based on the PhD thesis of the first author, extends Hoare 's
a t tempt [t01 to include parallelism in this deductive system. We feel it is intuitive
enough to be used as a basis for reliable proof outlines, and it has given us insight
into how to understand parallel programs. Other approaches related to our work
are contained in Ashcroft and Manna [t], Ashcroft [2], Lauer [t 2] and Newton [t 5].

* This research was partially supported by National Science Foundation grant
GJ-425t2.
22 Acta Informatica, Vol. 6

320 S. Owicki and D. Gries

Any parallel programming language must contain statements for describing
cooperation between processes--synchronization, mutual exclusion, and the like.
We provide a flexible but primitive tool, so primitive that other methods for
synchronization such as semaphores and events can be easily described using it.
This means that the deductive system can be used to prove correctness of pro-
grams using other methods as well. I t can also be used to prove correctness for
programs of such a fine degree of interleaving that the only mutual exclusion
need be the memory reference. This has been done for Dijkstra 's on-the-fly gar-
bage collector [6], with fairly good results given the complexity of this algorithm,
in [7].

The paper is organized as follows. In section 2 we describe Hoare 's work
briefly. In Section 3 we introduce the parallel language and extend his system to
include it. In Section 4 we give several examples of proofs of partial correctness,
while in Section 5 we show how to describe semaphores in the language and give
examples. Sections 6 and 7 are devoted to discussions of proofs of other important
properties of parallel programs: the absence of deadlock and termination. We
summarize our work in Section 8.

Thanks go to Charles Moore for many valuable discussions about parallel
processing, and also to Robert Constable and Marvin Solomon. We are grateful
to the members of I F I P working group 2.3 on programming methodology,
especially to Tony Hoare and Edsger W. Dijkstra, for the opportunity to present
and discuss this material in its various stages at working group meetings. The
observation that the memory reference must have "reasonable" properties, as
discussed in Section 3, was made by John Reynolds.

2. Proofs of Properties of Sequential Programs

Let P and Q be assertions about variables and S a statement. Informally,
the notation

s {Q}

means: if P is true before execution of S, then Q is true after execution of S.
Nothing is said of termination; Q holds provided S terminates. The notation

a

b

means: if a is true, then b is also true. Using such notation, Hoare [9] describes a
deductive system for proving properties of sequential programs. Let P, P~ re-
present assertions, x a variable, E an expression, B a Boolean expression and
S, S i statements, then the axioms for the five kinds of statements allowed are:

(2.t) null {P} skip {P}

(2.2) assignment {P~} x : = E {P} where P~ is the assertion formed by re-
placing every occurrence of x in P by E.

(2.3) alternation {P ^ B} S 1 {Q}, {P ^ -~B} S 2 {Q}

{P} if B lhen S 1 else $2 {Q}

Proof Technique for Parallel Programs I 32t

(2.4) iteration {P ^ B} S {P}

{P} while B do S {P ^ -,B}

(2.5) composition {P~} $1 {P~}, {P2} Sz {P~} {P.} S. {P.+z}

{P1} begin $1; S~;...; S. end {P~+z}

In addition, we have the following rule of consequence:

(2.6) consequence {P~} S {Q1}, P I- P1, QI I-Q

{p} s {Q}

The notation P F Q means it is possible to prove Q using P as an assumption.
The deductive system to be used in proving Q from P is not given; it could be
any system which is valid for the data types and operations used in the program-
ming language.

Note that declarations have been omitted, purely for the sake of simplicity.
Hence all variable are globally defined. We also choose not to give the syntax
of expressions or assertions. In general, we use an ALGOL-like syntax for ex-
pressions, while assertions will be given in a mixture of mathematical notation
and English.

Now let us briefly discuss proofs of properties of sequential programs. When
we write {P} S {Q}, this implies the existence of a proof of {P} S {Q}, using axioms
(2A)-(2.6). For example, suppose we have

S,-= begin x:---- a; ife then S1 else $2 end

and suppose we already have proofs

{Pt Ae}St{QI} and {Pt ^-~e}S2{QI}.

Then a proof of {P} S {O} might be:

(2.7) (1) {Pt:} x : = a {PI} assignment

(2) {Ply} x :---- a {Pt}, P b PI2 rule of consequence

(3) {Pt ^ e} $1 {QI}, {P1 ^ -~e} $2 {Qt} alternation

{Pt} ife then $t else $2 {Qt}

(4) {Pt} ifethen $t elseS2 {Ot},Qt bQ
{PI} ire then $t else $2 {Q}

(5) {P} x := a {PI}, {PI} ire then $I else $2 {Q} composition

{P} begin x : = a; ife then $t else $2 end {Q}

rule of consequence

22*

This proof is made much more understandable by giving a proof outline, in which
the program is given with assertions interleaved at appropriate places, as in (2.8).
In such a proof outline, two adjacent assertions {PI} {P2} denote a use of the

322 S. Owicki and D. Gries

rule of consequence, where P I I- P2.

(2.8) {P}
begin {P}

x : ~ - a ;

if e then {Pl ^ e}
$1
{Ql}

else {PI ^-~e}
$2

{Qt}
{Q}

end
(Q}

Most of our proofs will be presented in this style. If P t b P2 can be understood
easily, we will sometimes only write P I , or P2. Thus, we might have written

(2.9) begin {P} x : = a; { P t } ...

leaving out the assertion {Pt~} in (2.8). However, each statement S is always
preceded directly by one assertion, called its precondition, written pre (S). In (2.8),
pre (x : = a) = Pt~* while in (2.9) pre(x: = a) = P. This notion of a precondition of a
s tatement is important for our work. Similarly, the postcondition post (S) is the asser-
tion following statement S.

We may also leave out assertions entirely for a sequence of assignments or
simple conditionals, since the necessary weakest precondition of the sequence
can always be derived from the postcondit ion--from the result assertion of the
sequence. However, as we shall see, in the parallel case this can sometimes lead to
our inability to develop a proof; this situation can sometimes be remedied by
explicitly stating stronger preconditions. Proofs of correctness in the face of
parallelism require much more care then the simple sequential case.

We will later discuss proofs of properties of parallel programs, such as ter-
mination and the absence of deadlock. These are actually properties of the exe-
cution of a program, and in order to discuss them we should introduce an opera-
tional model of the language and show that the deductive system is consistent
with it. This has been done for the sequential system by Hoare and Lauer El t]
and Cook ES~, and for the parallel system by Owicki [t6]. The systems have
also been shown to be complete in a restricted sense by Cook [5] and Owicki [16];
informally this means that every program you would expect to be able to prove
partially correct, can indeed be proved in this system.

We will not introduce an operational model here, but wiU rely on the reader's
knowledge that this can be done and his knowledge about execution of programs.
We should however discuss assertions somewhat.

An assertion P is a Boolean function defined over the possible values of all
the variables of the program. Let the state m of the machine denote the set

Proof Technique for Parallel Programs I 323

of values of all variables at any moment during execution. By the phrase " P is
true at tha t moment" , we mean tha t Ptml-- - - t rue . By P = t r u e we mean that
P Em~ = true for all possible states m.

Our informal proof outlines and proofs of properties of execution rely on the
following property, which must be true if the deductive system is to be consistent
with the operation model:

(2.t0) Let S be a s tatement in a program T, and pre (S) the precondition of S
in a proof outline of {P} T {Q}. Suppose execution of T begins with P
true and reaches a point where S is about to begin execution, with the
variables in state m. Then pre(S)Ira] = t r u e .

3. Proof of Correctness of Parallel Programs

We introduce parallelism by extending the sequential language with two new
s ta tements - -one to initiate parallel processing, the other to coordinate processes
to be executed in parallel.

Let $t , $2 Sn be statements. Then execution of the cobegin s ta tement

r St //$2//...//Sn coend

causes the statements Si to be executed in parallel. Execution of the cobegin
statement terminates when execution of all of the processes Si have terminated.
There are no restrictions on the way in which parallel execution is implemented;
in particular, nothing is assumed about the relative speeds of the processes.

We do require that each assignment s tatement and each expression be executed
or evaluated as an individual, indivisible action. However this restriction can be
lifted if programs adhere to the following simple convention (which we follow in
this paper) :

(3.t) Each expression E may refer to at most one variable y which can be
changed by another process while E is being evaluated, and E may refer
to y at most once. A similar restriction holds for assignment statements
x : = E .

With this convention, the only indivisible action need be the memory reference.
That is, suppose process Si references variable (location) c while a different pro-
cess Sj is changing c. We require tha t the value received by Si for c be the value
of c either before or after the assignment to c, but it may not be some spurious
value caused by the fluctuation of the value of c during assignment. Thus, our
parallel language can be used to model parallel execution on any reasonable
machine.

The second s ta tement has the form

await B then S

where B is a Boolean expression and S a s tatement not containing a cobegin or
another await statement. When a process a t tempts to execute an await, it is
delayed until the condition B is true. Then the s tatement S is executed as an
indivisible action. Upon termination of S, parallel processing continues. If two

324 s. Owicki and D. Gries

or more processes are waiting for the same condition B, any one of them may be
allowed to proceed when B becomes true, while the others continue waiting.
In some applications it is necessary to specify the order in which waiting processes
are scheduled, but for our purposes any scheduling rule is acceptable. Note that
evaluation of B is part of the indivisible action of the await statement; another
process may not change variables so as to make B false after B has been evaluated
but before S begins execution.

The await statement can be used to turn any statement S into an indivisible
action :

await true then S

or it may be used purely as a means of synchronization:

await "some condition" then skip

Note that the await is not proposed as a new synchronization statement to
be inserted in the next programming language; it is too powerful to be implemented
efficiently. Rather, it is provided as a means of representing a number of standard
synchronization primitives such as semaphores. Thus to verify a program which
uses semaphores, one first expresses the semaphore operations as awaits, and
then applies the techniques given here.

We now turn to formal definitions of these statements, in (3.2) and (3.3). The
definition of the await is straightforward, but (3-3) will require an explanation,
along with a definition of "interference-free":

(3.2) await {P A B} S {Q}

{P} await B then S {Q}

(3.3) cobegin {PI} $1 {Qt} , {Pn} Sn {Qn) are interference-free

{PI A. . . ^ Pn} cobegin $1 / / . . . / /Sn coend {Qt ^ . . . ^ Qn}

Definition (3.3) says that the effect of executing $1 Sn in parallel is the
same as executing each one by itself, provided the processes don' t "interfere"
with each other. The key word is of course "interfere". One possibility to obtain
non-interference is not to allow shared variables, but this is too restrictive. A
more useful rule is to require that certain assertions used in the proof {Pi} Si
{Qi) of each process are left invariantly true under parallel execution of the other
processes. For if these assertions are not falsified, then the proof {Pi) Si {Qi}
will still hold and consequently Qi will still be true upon termination ! For example,
the assertion {x =>y} remains true under execution of x : = x + t , while the as-
sertion {x----y} does not. The invariance of an assertion P under execution of a
s tatement S is explained by the formula

{P ^ pre (S)) S {P}

We now give the definition of "interference-free".

(3.4) Definition. Given a proof {P} S {Q} and a statement T with precondition
pre (T), we say that T does not inter]ere with {P} S {Q} if the following two
conditions hold:

Proof Technique for Parallel Programs I 325

(a) (Q ^ pre(T)) T ((2),
(b) Let S' be any statement within S but not within an

await. Then {pre(S') ^ pre(T)} T {pre(S')}.

(3-5) Definition. {PI} St {Qt} {Pn} Sn {Qn} are inter/erence-]ree if the fol-
lowing holds. Let T be an a w a i t or assignment s tatement (which does not
appear in an a w a i t) of process Si. Then for all j, j 4:i , T does not interfere
with {Pi} Sj {Qj}.

We will from time to time make program transformations which obviously
don' t affect correctness, such as replacing beg in S end by S, and replacing
a w a i t t r u e then x : = E by x : = E provided the assignment satisfies (3A). One
transformation that is necessary in proving correctness of parallel programs is
the addition (or deletion) of assignments to so-called auxiliary variables. These
auxiliary variables are needed only for the proof of correctness and other proper-
ties, and not in the program itself. Typically, they record the history of execution
or indicate which part of a program is currently executing. The need for such
variables has been independently recognized by many; the first reference we have
found to them is Clint [4]. We define:

(3.6) Definition. Let A V be a set of variables which appear in S only in assign-
ments x : ----- E, where x is in A V. Then A V is an auxiliary variable set for S.

(3.7) Auxiliary variable trans/ormation: Let A V be an auxiliary variable se t
for S', and P and Q assertions which do not contain free variables from A V. Let
S be obtained from S' by deleting all assignments to the variables in A V. Then

W} s' {Q}
(P) s {Q}

We shall give examples of the use of the deductive system (2A)--(2.6), (3.2),
(3.3), (3.7) in the next section. But first let us discuss it. Rule (3.3) teaches us to
understand parallel processes in two steps. First, understand each process Si,
that is s tudy its proof, as an independent, sequential program, disregarding
parallel execution completely. Then show tha t execution of each other process
does not interfere with the proo/of Si.

The conventional way of showing non-interference has been to see whether
execution of a process Sj interferes with the execution of Si. Thus we find phrases
like "Suppose S i does so and so, and then Si executes this and does tha t" . This
interleaving of two dynamic objects, the execution of Si and Sj, is very difficult
if not impossible to understand for many parallel processes, and it is too easy to miss
an argument somewhere.

By concentrating on whether Sj can affect the proo] of Si's correctness, we
turn our attention to a static object which is easier to deal with. Showing non-
interference is quite mechanical; make up a list of Si's preconditions, a second
list of S]"s assignments and awai t s , and show tha t each element of the second
list does not disturb the t ruth of each assertion in the first.

If a s tatement T of Sj does interfere with a precondition P of Si, then either the
program is incorrect or else Si's proof is inadequate. Often the proof {Pi} Si
{Qi) can be adjusted--assert ions can be weakened, keeping the proof still valid,

326 S. Owicki and D. Gries

until S?" no longer interferes with them. In any case, the possibility of the pro-
grammer missing a particular case is quite low as long as he is careful and persists;
this is not the case with earlier informal reasoning.

4. Examples of Proof Outlines of Partial Correctness

Example t . A proof outline for a very simple program is given in (4.t). I t is
obvious tha t the program "works", as long as $t and $2 are interference-free.
This requires verification of 4 formulas:

t. {pre(Sl) ^ pre(S2)} S2 {pre(S1)}:
{ (x = o v x=2) ^ (x = o v x = 1) }
{x=0)
a w a i t t rue then { x = O }

x : = x + 2
{~=2}

{x=2}
{x=o v ~=2}

2. {Qt a pre(S2)} $2 {Qt} (verification left to the reader)

3. {pre (S2) ^ pre ($t)} S1 {pre (S2)} (left to the reader)

4. {Q2 ^ pre(Sl)} St {{)2} (left to the reader)

(4.t) {x=O}
S : cobegin {x = O}

{x=0 ~ x=2}
Sl : awa i t t rue then x : = x + l
{QI: x = l v x=3}

//
{x ~ 0}
{x=o v x= 1}
$2: a w a i t t rue then x : = x + 2
{Q2:x=2 v x=3}

coend
{(x=t v x=3) ^ (x---2 v x=3)}
{x=3}

Suppose we replace $t by the single assignment statement x : = x + 1. Then the
program does not follow convention (3.t). Hence the proof method could not be
used to prove this program correct for execution in an environment where the
grain of interleaving is finer than the assignment statement. In fact, execution
of the program (with this change) could result in the value 2 or 3 for x.

Example g. Consider the more realistic problem of finding the first component
x(k) of an array x(l :M), if there is one, which is greater than zero. Program
Findpos (4.2), given by Rosen [t 7], does this using two parallel processes to check
the even and odd subscripted array elements separately. In (4.3) we present a
proof outline, except for the interference-free check. Note that Findpos uses no
a w a i t statement.

Proof Technique for Parallel Programs I 327

(4.2) Findpos: begin

initialize: i : = 2;/" : = t ; eventop : = M + I ; oddtop :---- M + t ;
search: c o b e g i n

Evensearch : w h i l e i < rain (oddtop, event@) d o
if x (i) > 0 t h e n event@ : = i

e l s e i : = i + 2
//
Oddsearch: w h i l e / ' < rain (oddtop, eventop) do

if x (i) > 0 t h e n oddtop : = i
e l s e i : = i + 2

coend;

k : = rain (event@, oddtop)
end

(4-3) {ES ^ OS}

search: c o b e g i n {ES}

Evensearch: w h i l e i < rain (oddtop, event@) d o
{ES ^ i < eventop ^ i < M + t }
if x (i) > 0
t h e n {ES ^ i < M + t ^ x (i) > 0 ^ i < event@}

event@ : = i
{Es}

else {ES ^ i < eventop A x (i) <= O}
i : = i + 2
{Es}

II

{Es}
{ES A i >_ rain (oddtop , event@)}

{os}
Oddsearch : whi le/" < rain (oddtop, event@) do

{OS ^ i < oddtop ^ i < M + 1 }
if x (i) > 0
then {OS ^ / ' < M + t ^ x(/') > 0 ^ i<oddtop}

oddtop : = i
{os}

e l s e {OS A i<oddtop ^ x(i) --<_0}
/ ' := / '+2
{os}

{os}
{OS A /' >=rain (oddtop, event@)}

coend
{OS ^ ES A i >= rain (oddtop, event@) A /' >= rain (oddtop, event@)}

k : = rain (oddtop, event@)

{k <=M + l ^ Vl(O<l <k=~ x(l) ~_ 0) ^ (k <=M=> x(k) > O)}

328 S. Owicki and D. Gries

leventop - -< M+ t A Vl((l even A O < l < i) = ~ x (l) <=0) A i even I
where ES---- L A (eventop <= M =~ x (eventop) > O)

1

Joddtop < M + t A Vl ((l odd A 0 < l < i) =~ X (l) <= O) A i odd}
OS = [A (oddtop <= M =~ x (oddtop) > O)

While studying (4.3) do not worry about interaction between Evensearch and
Oddsearch; look upon them as sequential, independent programs. To verify the
interference-free property, we must show that each assignment in Oddsearch leaves
invariantly true each precondition and the final assertion of Evensearch. (The
argument that Evensearch does not interfere with Oddsearch is symmetric.) The
only assignment in Oddsearch that changes a variable in one of Evensearch's
assertions is oddtop:= i, and the only clause in Evensearch's assertions which
references oddtop is i >= rain (eventop, oddtop). Thus we must show that

(4.4) {i >min(eventop, oddtop) A pre(oddtop := j)}
oddtop : = j
{ i > rain (eventop, oddtop) }

Since pre (oddtop : = i) =~i < oddtop, (4.4) is certainly true. Thus, for this program,
establishing the interference-free property was quite simple.

Example 3. We consider a standard problem from the literature of parallel
programming. A producer process generates a stream of values for a consumer
process. Since the producer and consumer proceed at a variable but roughly
equal pace, it is profitable to interpose a buffer between the two processes, but
since storage is limited, the buffer can only contain N values. The description of
the buffer is:

(4.5) buHer [0: N - - t I is the shared buffer;
in = number of elements added to the buffer;
out= number of elements removed from the buffer;
the buffer contains in-out values. These are in order, in
huller [out m o d N] bu//er E (out + in -- out-- t) m o d N].

In (4.6) we show a solution to the problem in a general environment. In (4.7),
we consider a program using this solution which copies an array of values A Et : M] into
an array BEt :Ml. (4.8) gives a proof outline for the main program; (4.9) and (4.t0)
proof outlines for the separate processes. To show the interference-free property,
first note that assertion I is invariant throughout both processes. The only as-
signment in the consumer which might invalidate an assertion of the producer
is out : = o u t + l . The only assertion of the producer which it could possibly
invalidate is in-out < N, but clearly increasing out leaves this true. Hence the
consumer does not interfere with the producer; similar reasoning shows that the
producer does not interfere with the consumer.

(4.6) b e g i n corn m e n t See (4.5) for description of buffer;
in : = 0; out : = 0;
cobegin producer: . . .

Proof Technique for Parallel Programs I 329

(4.7)

(4.8)

await in-out < N t h e n sk ip ;
add: bu//er (in m a d N) : = nex t value;
m a r k i n : in : = in + t ;

//
consumer: . . .

await in-out > 0 then skip;
remove: this v a l u e : = bu//er [out mad N] ;
markout : out : = out + t ;

coend
end

]gt : begin comment See (4.5) for description of buffer;
i n : = 0; out:---- 0; i : = l ; ~ ' := t ;
cobegin producer: while i ~ M d o

begin x : = A [i] ;
await in-out < N then skip;
add: bu//er [in m a d N] : = x;
m a r k i n : in : = in + t ;
i : = i + t

end
//

consumer: while ~" ~ M do
begin await in-out > 0 t h e n sk ip ;

remove: y : = bu//er [out mad N] ;
markout : out : = out + t ;

B [i] : = Y ;
i : = i + t

end
coend

end

Proof outline fo r /g t (main program)
{M > o}
~gt: begin in : - - 0; o u t : = 0; i : = 1 ; / ' : = l ;

{ I A i = i n + l----t A i = O U t + t = l }
]g l ' : r

{ I A i = in + l = 1} producer { I ^ i = in + t = M + t }
/ / { I ^ i= out + t = t } consumer { I A (e [k] = A [k], 1 ~ k ~< M)}
coend

end
{B [k] = A Ek], 1 --< k _< M}

where I = ^ 0 <-- in-out <= N
^ 1 ~ i - - < M + t
^ t < : i < M + t

330 S. Owicki and D. Gries

(4.9)

(4.to)

Proof outline for]gl (producer). Inva r i an t I is as in (4.8).
{ I A i = i n + 1}
producer: while i ~ M do

begin {I A i - - - - i n + t A i<--M}
x : ~ A [i];
{ I ^ i = i n + t A i < = M A x = A [i]}
await in-out < N then skip;
{ I A i----- in + 1 A i <= M A x = A Ill A in-out < N }
add: bu//er [in mad N] : = x;
{ I A i = i n + l A i <--_M A buffer[in m a d N I = A [il A i n - o u t < N }
mark in : in : = in + t ;
{ I A i = in A i ~ M }
i : = i + 1
{ I A i= in+ t}

end
{ I A i - ~ i n + t = M + t }

Proof outline for]g I (consumer). Inva r i an t I is as in (4.8).
{ I A I C A i---- out + t }
consumer: while] =<M do

begin { I A I C A i = 0 u t + t A i < = M }
await in-out > 0 then skip;
{ I A I C A j = out + t A i <= M A in-out > 0}
remove: y : = buffer [out mad N] ;
{ I A I C A i = out + 1 A i <= M A in-out > 0 A y = A [i]}
markout: out : = out + t ;

{ I A I C A i----out A i < m A y = A [1"1}
B[1"] : = y ;
{ I A I C A i = o u t A] <=M A B [j] = A [1"~}

i : - - i + t
{ I A I C A i = o u t + I A i = < M + I }

end
{ I A I C A i = o u t + t = M + I }
{ I A (B [k] = A [k], I <_k<_M)}
where I V = {B [k] ~-- A [k], t =< k < i}

5. Implement ing Semaphores

A semaphore sem is an integer variable which can only accessed by two
operations, P and V.

P (sere) : if sem ~ O, sere : = s e m - - 1 ; otherwise suspend the process until
sem > O.

V (sere) : sere : : sere + t .

The P and V operat ions are indivisible. They can be represented by synchroniza-
t ion s t a t ements as follows.

P (sere) : await sem > 0 then sere : = sere-- t ;
V (sem) : await true then s e r e : = sem + 1

Proof Technique for Parallel Programs I 33~

Semaphores, as first defined by Dijkstra [18] were slightly different:

P'(sem) : sere : ~- s e re - - t ; if sem < 0 then the process is suspended on a
queue associated with sem.

V' (sem) : sem : ~- sere + 1 ; if sere <~ O, awaken one of the processes on the
semaphore's queue.

A possible implementation of these operations uses a Boolean array wait ing,
with one element for each process. Initially wai t ing ~i] =fa lse, and wai t ing Ell =
t r u e implies that i is on the queue.

P ' (s e m) : awa i t t rue then
begin sere : = s e r e - - 1 ;

if sere < 0 then wai t ing [this processJ : = true;
end;

awai t ~ w a i t i n g [this process] then skip
V ' (s e m) : awai t t rue then

begin sere : = sem + t ;
if sere <= 0 then

begin choose i such that wai t ing [i] ;
wai t ing [i] : = false

end
end

In some cases the effects of the operations P and V are different from those of
P ' and V', but for the properties we discuss--partial correctness, absence of
deadlock, and termination--these differences are irrelevant. See Lipton Et3] for
a comparison of the two kinds of semaphore operations. We leave it to the reader
to define semaphores P " and V", like P ' and V', except that the longest waiting
process always gets served next.

Given a program with semaphores, the semaphore operations can be replaced
by the corresponding awaits. The result is an equivalent program which can be
proved correct using the methods presented in this paper. A number of other syn-
chronization primitives can also be modelled using await.

Consider a second version of the producer-consumer program,/g2 (5.1), which
uses semaphores/ull and e m p t y to synchronize access to the buffer. In (5.2) we
show the translation of the semaphores into awaits; (5.2) also uses auxiliary
variables needed for a proof of partial correctness. In (5.3) we give a proof out-
line for the main program; in (5.4) the proof outline for the consumer (the pro-
ducer is omitted, since it is similar). The proof is essentially the same as for the
earlier version/g t of the program. Using inference rule (3.7), the auxiliary variables
can be removed to yield a proof of {M =>0}/g2 { B [k]=A [k], t <_k ~<M}.The
producer does not interfere with the proof of the consumer because the assertions
in this proof include only I (which is invariantly true in both processes) and
variables not changed by the producer. Likewise, the consumer does not interfere
with the proof of the producer.

Habermann (8) presents this solution to the producer-consumer problem and
provides an informal proof of correctness. He uses special functions which count
the number of P and V operations on each semaphore; these play the same
role as our auxiliary variables.

332 S. Owicki and D. Gries

(s.~)

(5.2)

/g2: begin comment bu//er [0 : N - - t] is the shared buffer,
lul l= number of full places in bu//er (semaphore),
empty = number of e m p t y places (semaphore) ;

/ull:=O; empty:= N ; i : = t ; j : = 1;
c a b e g i n producer: w h i l e i =<M do

b e g i n x : = A [i] ;
P (empty);
bu//er[i mad N] : = x;
v (/uZl);
i : = i + t

e n d
/ /

coend
end

consumer: w h i l e ~' ___< M do
b e g i n P (lull) ;

y : = bu//er ~" m a d N] ;
V (empty) ;
B [i] : = Y;
i : = / + t

end

/g2' : begin comment Pempty, Vempty, P/ull, V/ull are
auxil iary variables;

]ull : = 0; empty : = N ; i : = 1 ; 1" :---- t ;
P/ull, V/ull, Pempty, Vempty : = 0, 0, 0, 0;
cobegin producer: while i --<M do

b e g i n x : ---- A Eli ;
await empty > 0 then

begin empty:= empty--1;
Pempty : = Pempty + t e n d ;

bu//er[i mad N] : = x;
await true then

begin]ull := /ul l+ t ;V/utl := V/ul l+ t end;
i : = i + t

//

coend

end

consumer: w h i l e j =<M d o
b e g i n a w a i t lull > 0 t h e n

b e g i n / u l l : = / u l l - - t ; P/ull := P/ul l+ t e n d ;
y : = huller [I' m a d N] ;
await true then

begin empty : = empty + t ;
Vempty : --- Vempty + t e n d ;

B[j] : = y ;
i : = i + t

end

end

Proof Technique for Parallel Programs I 333

(5.3)

(5.4)

Proof outline of]g2' (main program)

/g2': begin
/ u l l := 0; empty : = N; i : = l ;] ' : = t ;
P/ull, V/ull, Pempty, Vempty : = 0, 0, 0, 0;
{I n V/u l l= Pempty ^ i = V/ul l+ t n Vempty= P/ull
n i = Vempty + t }

cabegin
{I ^ V/ull---- Pempty ^ i = V/u l l+ t}
producer
{z}

//
{I ^ Vempty = Plull ^ f = Vempty + t }
c o n s u m e r

{ I ^ (B[kJ=A[k~, I <--k<--M)}
coend

end

{ B [k J = A [k], t <_k <_M)}

where I = (bu//er [k mod N] = A [k], Vempty < k <= V/ult)
^ / u l l = V/ul l-- P/ull
^ e m p t y = N + Vempty-- Pempty
^ 1 <--i<--M+t
^ I =<i_--__M+t

Proof outline for/g2" (consumer). Invariant I is given in (5.3)

{I ^ IC ^ Vempty = P/ull ^ f = Vempty + t)
consumer: while] --<M do

begin {I ^ IC ^ Vempty= P/ull ^]= Vempty+ t ^ i <-M}
await /ul l > 0 then

begin/ull : = / u l t - - t ; P/ull : = P/u l l+ t end;
{I n IC ^ Vempty = P/ul l - - t ^ i = Vempty + 1 ^ i <= M}
y : = bu//er [1" mod N] ;
{I ^ IC > Vempty = P/ul l - - t ^ i = Vempty + t
^ i <=M ^ y = A [1"]}

await true then
begin empty : = e m p t y + t ;

Vempty : = Vempty + t end;
{I ^ IC A Vempty = P/ull A] = Vempty ^] <=M ^ y = A [1']}
B[i] : = y ;
{I ^ IC ^ Vempty = P/ull n i = Vempty ^ f ~= M ^ B ~'] = A [7']}
i : = i + t
{I A IC ^ Vempty = P/ull ^ f = Vempty + t n] ~_ M + t }

end

{I A I C ^ j = M + t }
{I h (B [k]=A [k], 1 _<k _<M}
where I C = (B [k] = A [k], 1 =<k<])

334 S. Owicki and D. Gries

6. Blocking and Deadlock

Because of the a w a i t statements, a process may be delayed, or "blocked"
at an await , until its condition B is true.

(6.1) Definition. Suppose a statement S is being executed. S is blocked if it has
not terminated, but no progress in its execution is possible because it (or all of
its subprocesses that have not yet terminated) are delayed at an await .

Blocking by itself is harmless; processes may become blocked and unblocked
many times during execution. However, if the whole program becomes blocked,
this is serious because it can never be unblocked and thus the program cannot
terminate.

(6.2) Definition. Execution of a program ends in deadlock if it is blocked.

(6.3) Definition. A program S with proof {P} S {Q} is/ree [rom deadlock if no
execution of S which begins with P true ends in deadlock.

We wish to derive sufficient conditions under which a program is free from
deadlock. First of all, a proof of correctness of a program S includes a proof of
correctness of a program S', together with several applications of the auxiliary
variable rule (3.7) which reduce S' to S. Since the reduction consists of deleting
assignments to auxiliary variables, we take as obvious the following theorem
(a proof with respect to a particular execution model appears in Owicki [16]).

(6.4) Theorem. Suppose program S' is free from deadlock, and suppose S is
derived from S' by application of inference rule (3.7). Then S is also free
from deadlock.

We are now in a position to give sufficient conditions for freedom from dead-
lock.

(6.5) Theorem. Let S be a statement with proof {P} S {Q}. Let the awai ts of
S which do not occur within r of S be

A s : await Bj then . . .

Let the cobegins of S which do not occur within other cobegins of S be

T~: cobegin S~//S~//...//S~k coend
Define

D (S) = [V(pre(AT) ^ ~Bi)] v [VDI(Tk)]

DI(T~)=[A(post(S~) v D(S~))] ^[V D(S~)]

Then D (S)= false implies that in no execution of S can S be blocked. Hence,
if S is a program, S is free from deadlock.

Proo/. We show by induction on the level of nesting of r in S that S
blocked in state m implies D (S)[m] = t r u e . Hence D (S) = f a l s e would indicate
that S cannot be blocked. Suppose S has no r Then it is blocked at a
single a w a i t with label Aj. Therefore (pre (A j) ^ ~ Bj) [m] = true and D (S) Em] =
true.

Suppose S contains r and is blocked in state m. Then either it is
blocked at an a w a i t Ap in which case D(S) [m] = t r u e as above, or one of its

Proof Technique for Parallel Programs I 335

parallel processes T~ is blocked. Consider one of T~'s processes S~. By induction, we
know tha t if S~ is blocked in state m, tha t D (S ~) [m] = t r u e . Now, since T k is
blocked, then each of its processes S~ has terminated or is blocked, and moreover,
at least one of its processes S~ is blocked. Inspection of formula D 1 (Tk) shows
therefore tha t D 1 (Tk) Ira] = true. Hence D (S) [m] = t rue . g.e.d.

Note tha t (6.5) provides a static check in order to prove a proper ty of all
executions of S, t6 show freedom from deadlock we need only manipulate the
assertions in the proof of correctness. The amount of detail is directly proport ional
to the level of nesting of parallel s tatements .

If a s ta tement S contains no parallel s tatements , then V D 1 (T~) is the e m p t y
k

union and is false, and hence D (S) reduces to

V. ((pre(Aj) ^ ~ B i) .

If, further, S has no awaits, then this union is also e m p t y and D (S) is false.
Thus, a sequential program without awaits is free from deadlock. I t is also
easy to apply the theorem to show tha t if a program has no awaits, or if all
awaits have the form await true then then the program is free from dead-
lock. Finally if a parallel s ta tement T is not supposed to terminate, i.e. pos t (T)
= false, then D I (T) reduces to

D 1 (T) = Q D (Si) where the Si are the processes of T.

Section 4 contains several examples of programs with proof outlines. P rogram
(4A) is free from deadlock since the conditions of the awaits are all true. Find -
pus in (4.2) is free from deadlock since it has no awaits.

To prove freedom from deadlock for the producer-consumer program (4.7),
we use its proof outline given in (4.8)-(4.t0). We have

D (producer) =~ in < M ^ in-out = N
post (producer) =~ in---- M
D (consumer) =~ out < M ^ in-out = 0
post (producer) =~ out = M

Writ ing D l (/ g t ') = x A y , where]g t ' is the r statement, we then rewrite
x as the "or" of 4 terms.

x=~ [in < M ^ i n - o u t = N ^ out < M ^ i n - o u t = O l
v [in < M ^ in-out ~-- N ^ out = M]
v [in = M A out < M A in-out = Ol
V [in = M ^ out = M]
= ~ N = 0 v N < 0 v false v i n = o u t = M
=~N <=0 v i n = o u t = M

y = D (producer) v D (consumer) =~ in < M v out < M
D ([g t) = D l (t g l ') = x A y = ~ N <=0.

Hence, sufficient conditions for freedom from deadlock i n / g t is tha t N > 0 - - tha t
is, the buffer has room at least one element.

I n some programs using semaphores, it is often useful to know how m a n y processes
can be blocked at a part icular moment , wait ing to enter a critical section. We

23 Acta Informatiea, Vol. 6

336 S. Owicki and D. Gries

can prove a general theorem abou t such programs, general izing the idea of block-
ing a b i t a t the same t ime.

(6.6) Theorem. Consider a p rogram of the form (6.7). Then a t any poin t of execu-
t ion a t most n - - m of the processes S t Sn can be blocked at P (s). Fu r the r -
more, if a process is b locked a t P (s), then m processes are execut ing the cri t ical
sect ion or V(s) ."

(6.7) s : = m ; . . .
cobegin $ t / / . . . / / S n / / . . . / / s p coend

where each Si, t <--_ i ~_ n, has the form given below, none of the processes Si,
i > n , reference s, and the only references to s are those shown:

Si: .. .
while t rue do

begin noncr i t ica l section ;
P (s);
cri t ical sect ion;
V (s);
noncr i t ica l sect ion

end

Proo/. In (6.8) we show this same program wr i t t en using awaits, with auxil i-
a r y var iables , and wi th a proof outl ine. The assert ions t h a t INCi----1 t h roughou t
the cr i t ical sect ion and I N C i = O elsewhere are jus t i f ied since the only opera t ions
on I N C i are those expl ic i t ly shown. Simil lar ly , assert ion I holds th roughou t
because there are no o ther opera t ions on s. The interference-free requi rement is
eas i ly verif ied, because each assert ion is a s t a t emen t about INCi , which is not
changed in Sj , ~" 4 : i , and abou t I , which is i nva r i an t over the s t a t emen t s in pro-
cess S/'.

Now suppose n - - m + k, k ~ 0, processes are blocked at P (s). Then we have

I N C i = 0 for these processes, and hence s = m - - ~ I N C j > 0. Bu t the fact t ha t
i=1

the processes are b locked a t P (s) implies t h a t s = 0, and we have a contradict ion.

Secondly, suppose a process is b locked bu t only m - - k , k > 0 processes are
execut ing the i r cr i t ical sect ion or the await true s ta tement . Because a process
is b locked we have s = 0. Bu t since m - - k processes are execut ing their cri t ical
section, for each of these processes we have I N C i = 1, and toge ther wi th invar ian t
I th is yields s > 0. Thus we have a contradic t ion.

(6.8) s : = m; INC1, I N C 2 I N C n : = 0, 0 0; . . .
{I ^ (I N C i = O , t <_i --<n)}
cobegin $t / / . . . / / S n / / . . . / / S p r
(false)
where Si, t <~ i <~ n, is

{I ^ I N C i = O}
Si: ...

while true do

Proof Technique for Parallel Programs I 337

begin {I ^ I N C i = O }
noncritical section ;
{ I A I N C i = O}
await s > O t h e n begin s : = s - - l ; I N C i : = 1 end;
{ I A I N C i = t}
critical section ;
{ I A I N C i = t}
await true then begin s : = s + t ; I N C i : = 0 end;
{ I ^ I N C i = O}
noncritical section

end
{false}

n

where I =-- s = m -- ~. I N C i A (Vi, t <= i ~ n, 0 <= I N C i <= t)

Theorem 6.6 thus confirms our understanding of the semaphore.

7. Termination
Let us suppose that all operations are defined so tha t they always yield a

value in the expected range. Then the only way a sequential program can fail
to terminate is to loop infinitely in some while loop. In order to include proof of
termination in a useful practical manner, one can replace the iteration inference
rule (2.4) with another. Let t be an integer function,, t=>0. Let us also let
wdec (Q, S, t) mean that execution of S with precondition Q decreases the value
of t by at least one. We can write this as

waec (Q, s , t) - - {9 A t = e} S {t < e}.

Then the new inference rule for iteration is

(7.t) iteration { P A B } S { P } , t > = O , w d e c (P A B , S , t)

with {P} while B do S {P A ~ B }
termination

An alternate formulation allows t to become negative, but then requires tha t
(-P A t ~ 0) =~ ---B:

(7.2) iteration { P A B} S {P}, wdec (P A B, S, t), (P A t ~ O) =~ --. B

with {P} while B do S {P ^ ~ B }
termination

In any case, we have "axiomat ized" loop termination in a practical, useful
manner.

While there are some parallel programs which do not terminate, it would
still be convenient to be able to prove termination of parallel programs. Suppose
that we prove tha t each process of a parallel program S terminates, using (7.t)
instead of (2.4). What else must we do to prove tha t S itself terminates ? First
of all, we must show that parallel execution of processes does not invalidate
proof of sequential termination of the processes. If we do that , then the only
way for the program not to terminate is the occurrence of deadlock. This leads
us to redefine first of all the interference-free property:

23*

338 S. Owicki and D. Gries

(7.3) Definition. Given a proof {P} S {Q} and a statement T with precondition
pre(T), we say that T does not inter/ere with {P} S {e} if the following three
conditions hold :

(a) {Q ^ pre(T)} T{Q};

(b) Let S' be any statement within S but which is not within an awa i t .
Then {pre(S') ^ pre(T)} T {pre(S')};

(c) Let W be a loop within S, but not within an a w a i t of S. Let t be the
integer function used in the proof of correctness of the loop (using (7.1)
or (7.2)). Then { t= c ^ pre(T)} T {t<~c}.

(7.4) Definition. {P1} $1 {Q1} {Pn} Sn {Qn} are inter/erence-/ree if the
following holds. Let T be an a w a i t or assignment statement (which does not
appear in an awai t) of process Si. Then for all/',/" 4: i, T does not interfere with
{P/'} Si {Qi}-

We can then redefine the rule (3.3) for the cobegln statement:

(7.5) cobegin {P1} $1 {Q1} {Pn} Sn {Qn} interference-free,
with {P1} $1 {Q1} {Pn} Sn {Qn} deadlock-free

termination {P1 ^ . . . ^ Pn} cobegln $ 1 / / . . . / / S n coend {Q1 ^ . . ^ Qn}

The property "deadlock-free" for a set of parallel processes is defined as the
sufficient conditions given in theorem (6.5) for freedom from deadlock.

As an example, consider program Findpos (4.3). We have thus far shown
partial correctness. To show termination of Evensearch using rule (7.2) instead of
(2.4), we introduce the function

te ~ min (oddtop , eventop) -- i

Note that for the loop in Evensearch, te <=0=~--,B. Secondly,

wdec (ES ^ i < event@ ^ i < M + 1, body (Evensearch), re).

Similarly, we use the integer function tO ~ rain (eventop, odd top) - i to show that
Oddtop terminates. To show non-interference of Evensearch by Oddsearch, we must
show that Oddsearch does not increase te (the argument for Evensearch not inter-
feting with Oddsearch is similar). The only statement in Oddsearch which changes a
variable of te is oddtop : = i. We now show that execution of this does not increase
te :

{te-~ c A pre (oddtop := i)}
{rain (oddtop, eventop) -- i = c ^ i < oddtop }
{rain (f, eventop) -- i <--_ c}
oddtop : =
{rain (oddtop, eventop) -- i <= c}

Finally, there is no deadlock since there are no awa i t s in the program.

8. Conclusions

We have developed a deductive system for proving properties of parallel
programs, building on work by Hoare [9, 10]. Besides partial correctness, the
system lends itself to proving other properties: freedom from deadlock, and

Proof Technique for Parallel Programs I 339

termination. A paper is in preparation concerning mutual exclusion. Once one
has a partial correctness proof, one can often prove these other properties just
by manipulating in some fashion the assertions already created for the partial
correctness proof. Hence the proofs of these properties of execution only require
work with static ob jec ts - - the assert ions-- instead of with the dynamic execution
of the program.

A number of other properties could be considered: priority assignments, pro-
gress for each process, blocking of some subset of the processes, etc. Many of
these are difficult to define in a uniform way, while others require a model with
definite rules for scheduling competing processes. Hopefully, future work will
broaden the range of properties which can be dealt with using axiomatic methods.

The synchronization primitive discussed is admittedly primitive, and a paper
is in preparation (19) which covers the same material using a higher level synchro-
nization statement, Hoare 's w i t h - w h e n statement. However, this primitive
synchronization statement has proved useful. First, it has given us insight into
how to understand parallel processes, as discussed in Section 3. Secondly, we
have used it on a number of parallel programs from the literature--Findpos,
the consumer-producer problem, etc., and we feel it will be useful in practical
work with parallel programs. I t gives us a method for dealing more formally with
other synchronization primitives.

The "insight" gained from this work, towards understanding parallelism, may
not have come across well if the reader already understood the examples before-
hand. A quite complicated problem with as fine a grain of interleaving as can
be imagined, Dikjstra 's on-the fly garbage collector [6~, has been proved correct
in what we feel is a satisfactory manner [71, and we invite the reader to s tudy it.
The first author was also able to verify the semaphore solutions for readers and
writers proposed by Courtois, Heymans and Parnas. This was fairly hard to do,
because of the complexity of their solution which gives priority to the writer.

References

1. Ashcroft, E.A., Manna, Z.: Formalization of properties of parallel programs.
Machine Intelligence 6. Edinburgh: University of Edinburgh Press 197t, p. 17-41

2. Ashcroft, E. A. : Proving assertions about parallel programs. Dept of Computer
Science, University of Waterloo, CS 73-01, 1973

3. Cadiou, J.M., Levy, J. J. : Mechanical proofs about parallel processes. Proc.
t4 Annual IEEE Symposium on Switching and Automata Theory, t973, p. 34-48

4. Clint M.: Program proving: coroutines. Acta Informatica 2, 50-63 (1973)
5. Cook, S. A. : Axiomatic and interpretive semantics for an ALGOL fragment.

Dept. of Computer Science, Toronto, TR 79, 1975.
6. Dijkstra, E. W. et al.: On-the-fly garbage collection: an exercise in cooperation.

In Working Material for the BIATO Summer School on Language Hierarchies
and Interfaces, Munich, 1975

7. Gries, D. : An exercise in proving properties of parallel programs. (Submitted to
Comm. ACM)

8. Habermann, A. N. : Synchronization of communicating processes. Comm. ACM
15, 17t-t76 (1972)

9. Hoare, C. A. R. : An axiomatic basis for computer programming. Comm. ACM 12,
576-58O (t969)

340 S. Owicki and D. Gries

t0. Hoare, C. A. R. : Towards a theory of parallel programming. In: Hoare, C.A.R.,
Perrot, R. H. (eds.): Operating systems techniques. New York: Academic Press
1972

t 1. Hoare, C. A. R., Lauer, P. E. : Consistent and complementary formal theories
of the semantics of programming languages. Acta Informatica 3, 135-t 53 (1974)

12. Lauer, P.E.: Consistent formaltheories of the semantics of programming languages.
IBM Laboratory Vienna, TR 25.t2t, 1971

t 3. Lipton, R. J. : On synchronization primitive systems. Carnegie Mellon University,
PhD Thesis, 1974

t4. Lipton, R. J. : Reduction: a new method for proving properties of systems of
processes. Yale Computer Science Research Report 30, 1974

t 5. Newton, G. : Proving properties of interacting processes. Acta Informatica
t 6. Owicki, S. : Axiomatic proof techniques for parallel programs. Computer Science

Dept., Cornell University, PhD thesis, 1975
t 7. Rosen, B. K. : Correctness of parallel programs: the Church-Rosser approach.

T. J. Watson Research Center, Yorktown Heights (N. Y.), IBM Research Report
RC5107, t974

t8. Dijkstra, E . W . : The structure of the THE multiprogramming system. Comm.
ACM 11, 341-347 (1968)

t9. Owicki, S., Gries, D.: Axiomatic proof techniques for parallel programs 1I. In
preparation

Susan Owicki
Computer Science Dept.
Cornell University
Ithaca, NY 14853
USA

David Gries
Cornell University
Dept. of Computer Science
Upson Hall
Ithaca, N.Y. 14850
USA

