Concurrent Program Logics
Lecture |. Overview

Viktor Vafeiadis

What is a program logic!?

Formal system for reasoning about programs
Assign specifications to programs
Prove that program adheres to its spec.

Adhere to correctness spec => no bugs

Concurrent program logic =>
program logic for concurrent programs

What is in this course!?

Study several concurrent program logics
Prove programs correct using program logics
Prove soundness of the program logics

Mostly manual proofs
(Automation/mechanisation later on)

Syllabus

Hoare logic

Owicki-Gries

Separation logic

Abstract predicates
Concurrent separation logic (CSL)
Permissions

Storable locks

Rely/guarantee

RGSep

Local rely-guarantee (LRG)
Deny-guarantee

Concurrent abstract predicates

Dependency graph

Hoare Ioglc

69

Resource invs

Owicki-Gries

77

Rely-guarantee

Abstract preds

PermissionS\
09

Deny-guarantee 09

l NO concurrency

LRG

Storable locks

coarse-grained conc.
fine-grained conc.

Conc. abs. preds

Programming language

Expressions:
E:=x|n|E+E|E-E]..
Boolean expressions:
B:=T|F|E=E|E<E]|..
Commands:

C:u=skip|x:=E]|C;C|if Bthen Celse C
| while B do C

Expression semantics

Store,s : var -> Z
Expressions, [[E]] s : Z

Boolean expressions, [[B]]s : bool

[[x]]s = s(x)
[[n]]s =n
[[Er + E2]]s = [[E1]]s + [[E2]]s

...etcC...

Command semantics

x:=E,s — skip, s(x := [[E]]s)

skip; C,s = C, s

Ci;C2,s = C;C2s ifCl,s = C)s

if B then Ci else C2,s = Ci,s if [[B]]s

if B then Ci else C2,s = C2,s if not [[B]]s

while B do C, s
— if B then (C; while B do C) else skip, s

Hoare logic

j_program

P} C 1Q}

recondiion SRR porcomiion

If P(0) and C,0 —* skip,0” then Q(C0")

CAR Hoare.An axiomatic basis for computer programming.
CACM 1969.

Assignment axiom

Forward (Floyd):
{P} x:=E {dx".P[x'/x] A x=E[x/x]}

Backward (Hoare):

{Q[E/x]} x:=E {Q}

Skip:
{P} skip {P}

Structural rules

P=P {P}C{Q} Q=0Q

P} C{Q;
PPCQ1} {P}C{Qy

{P} C {Q1 A Q2}
{Pi} C{Q} {P} C{Q}

{P1 v P2} C {Q}
P} C1QF x&v(G Q)

{dx.P} C {Q}

Other proof rules

P CiiQr {Q}C21R}

(P} C1; C2 {R}

{P A B} Ci {Q} {P A =B} C2 {Q}

{P} if B then C| else C2 {Q}

{P A B} C{P}

{P} while B do C {P A B}

Derived while rule

{R A B} C{R}
P=R {R}whileBdo C{RA"B} RA-B=Q
{P} while B do C {Q}

Heap commands

[E] := E
x := alloc E
dispose E

Concurrency

Static threads & CCRs:

C:=..| C||C| with r when B do C
| let rin C

First class threads & locks:

Cu=..|x:=fork C|join E
X := create_lock | free lock E
lock E | unlock E

