Permissions Accounting
CPL, May 30t 2011

John Boyland: Checking Interference with
Fractional Permissions. SAS 2003.

Richard Bornat, Cristiano Calcagno, Peter
W. O'Hearn, Matthew J. Parkinson:

Permission accounting in separation
logic. POPL 2005.

Permission and Ownership

e Separation logic uses heap predicates

— E.g., {emp}, {E --> E’}, etc.
* View heap predicates as describing ownership
* View ownership as permission:

— To read

— To write
— To dispose (i.e., to release memory)

Ownership Transfer

O’Hearn: Separation logic (“Resources,
concurrency and local reasoning”, CONCUR’04])

* Transfer ownership of heap cells in and out of
shared resources

* Slogan: “permission rather than prohibition”

* permission = exclusive ownership, no room
for passivity

Passivity

Means:
— Permission to read,
— but no permission to write (or dispose)

Giving out read permissions is “easy”
Challenge: gathering them back up

(How do we know if we have them all?)
Werite/dispose require exclusive permission

Fractional Permissions

Boyland’s “Checking interference with
fractional permissions” (SAS 2003)

Rational number z models permission
Total control, z = 1 (Read, write, dispose)
Shared access, z < 1 (Read-only)

Permission is linear
— New creates (z=1), dispose destroys (z=1)

Fractional Permissions

r—FE — 0<2z<1

/
LITP?E*Lﬂlz—,?'E — LITTE/\Z>0/\Z > ()

z

Review: Separation Logic

{Q}C{R} (
{PxQ}C{P x R}

modifies C N wvars P = ()

{emp} x :=new() {z — _}
{F — _} dispose E {emp}

(R}} =E (R}
{E'— _} [E']:=E {E'— E}
{E'— E} x:=[E'|{E'— EANxz=F}

Review: Concurrent Sep Logic

{Q1} Ci{R1} - {Qn}Crn{Rn}

{Qur-*xQn}(Cr - || Ca){Rix--- % Rn}

Fractional Permissions

{emp} z :=new() {z > _}
{E > _} dispose E {emp}

{RE} z=E {R}
(zrr } ff=F {z)
{E'+— E} z:=[E'|{E'— EANz=FE"}

Fractional Permissions Example

{emp}
T = new();

{z 4 -}
[z] :=T;

{.Ti—f7} {.Tt—f7*’Lt—,r7}

{1‘ 7} {-l 7}
o] - 1 o] +1 ;
{Tr—>7/\y—6} {.13!—>7/\.,:8}

{Ti—f7*:rl—f7/\y_6/\7_8}
{xTAYy=6A2=8}

dispose x:

{femp Ay =6A2z =8}

Boyland’s Result

Not yet in context of separation logic
Rather: type system for fractional permissions

Simple imperative parallel language:
— Parallel statements
— Aliasing of memory

Soundness/Determinacy: Programs that type-
check do not exhibit interference: execution
leads to deterministic results.

Utility of Fractional Permissions

* Good for
— Symmetrical splitting of resources
— Indefinite subdivision
— “Predictable” split/combine behavior

* Examples:
— lambda-term substitution (section 9.1 of PASL)

— (no large examples given by Boyland)

Limitations of Fractional Permissions

* Permissions not always divided/recombined
 Sometimes, they are counted

Counting Permission Problem:

* Permissions given out at one point
— By one thread, by one subroutine, etc

* Permissions gathered back at another
e “give-out” and “gather-back” orders may differ

Readers and Writers Example

READERS WRITER

P(m);
count := count + 1;
if count = 1 then P(write);

V(m); P(write);
.. reading happens here ...; ... writing happens here ...
P(m); V(write)

count := count — 1;
if count = 0 then V(write);

V(m)

The Concurrent Components

the four uses of the binary mutex m;

the reader prologue count := count + 1...;
the reader action section;

the reader epilogue count := count — 1...;
the two uses of the binary mutex write;

the writer action section.

Readers and Writers Example

e Questions

— How are these concurrent components
controlled?

— How is the count variable restricted to reader
prologue and epilogue?

e (Partial) answers to come:

— Uses permission accounting with CCRs
(conditional critical regions)

Counting Permissions

Bornat, Calcagno, O’'Hearn, Parkinson:
“Permission Accounting in Separation Logic’

A natural n >= 0 counts “split-off” parts
Source permission, no readers: n =0
Source permission, k split-off readers: n=k

Reader permission: n = -1

4

Counting Permissions

E™E —n>0
EE An>0 — E2L B «E— E'

{emp} z:=new(E) {z+% E}

(B2} dispose E’ {emp}
(R3} ==E (R}
{E' % } [E':=FE {E' % E}

{E' — E} x:=[E'] {E' — ENxz=FE}

Review:
CCR = Conditional Critical Region

with b when G do C od

. acquire bundle b;

. evaluate the boolean guard G;

3. 1f G 1s true, execute the command C' and release b;

. 1f G 1s false, release b and try again.

Review: CCR Rule

{(Q* Iy) N G}C{R* Ib}

{Q}with b when G do C od{R}

Non-interference Side Condition:
Processes cannot refer to variables of a bundle
outside of a conditional critical region

Review:
Mutex as a Resource Bundle m

Following [15], a mutex semaphore m is a bundle whose
CCRs are either

P: with m when m # 0 dom := 0 od, or

V: with m when true do m := 1 od.

* P waits for resource
e Vsignals that resource is free

Readers & Writers (Original Version)

READERS WRITER

P(m);
count := count + 1;
if count = 1 then P(write);

V(m); P(write);
.. reading happens here ...; ... writing happens here ...
P(m); V(write)

count := count — 1;
if count = 0 then V(write);

V(m)

Readers & Writers (CCR Version)

READERS WRITER

with read when true do
if count = 0 then P(write) else skip fi;
count +:= 1
od;
P(write);

... reading happens here ...;

.. writing happens here ...

with read when count > 0 do

.count —:= 1; . V (write)
if count = 0 then V(write) else skip fi
od

write: if write = 0 then emp else y — _fi

read: if count = 0 then emp else y —2425 _ fi

Counting Permissions: Example

{emp}

P(write) :

{y =}

{(emp * if write = 0 then emp else y % _fi) A write = 1} . \

{(emp xy +% _) A write = 1}
write ;= 0

{y +% _x (emp A write = 0)} .-
\{yr—r * (if write = 0 then emp elseyr—z fi A write = 0)})

P(write) waits until it is okay to write.

Counting Permissions: Example

{y >}

V(write) :

{emp}

({‘y -2 _xif write = 0 then emp else y % _fi} .". \
{y % _% (emp A write = 0)}
write := 1

{emp * (y L A write = 1} .
{emp * (if write = 0 then emp else y -2 _fi A write = 1)}/

V(write) signals that it is okay to read.

Reader Prologue

{emp}
with read when true do

count

{if count = 0 then emp else y —= _fi x emp}
if count = 0 then {emp} P(write) {y = _}

GISQ {y count _} Sklp {y count _}
fi
{y count _}
count +:= 1
{y ; count—1 —} {y count JRTAP VN _}

od
{z— N}

Reader Epilogue

{z—= N}

with read when count > 0 do

{if count = 0 then emp else y ~°22% _fix 2z = N A count > 0}
count —:= 1

{if count +1 = 0 then emp else y -2, fix 2 = N A count +1 > 0} .

{y et 42— NA count >0} . {y 2222 A count > 0}
if count = 0then {y+>% _} V(write) {emp}

else {y count _} Sklp {y count ~
fi
{if count = 0 then emp else y -2 _fi x emp}

od
{emp}

Combining Fractional and Counting

* Fractional and counting are both useful
* So, combine and use together.

Combined Model — Rational g’s

undefined if (¢ >0orq¢ >0)and g+¢ <0

undefined if ¢ > 0and ¢ >0
gx3q =
q+q otherwise

Counting

EL E «— E B v E—=L E
when ¢ > 0 and ¢’ > 0

Fractional

E—9td) g oy B =9 B W E—L, E
when ¢,q¢" > 0

Combined Model: Axioms

{Rp} x:=E {1}

{E' ™Y } [E']:=FE {E' ™ B}
{F"™ FE} x=[E'] = {E'+™™ FEANzxz=F}
mw

{emp} z:=new(r) {z+—% E}
{E' —% _} dispose E' {emp}

m_W is the (unique) write permission (total perm.)

PASL: Future Work

* |Inductive definitions
— Sometimes DAGs allowed when we want trees
— Does “Fresh look at separation algebras and share
accounting” (Robert Dockins et al) address this?
e Variables as resources

— “Hoare logic’s variable assignment rule finesses the
distinction between program variables and logic
variables and assumes an absence of program-variable
aliasing”

— In Separation Logic: the heap is localized via frame rule,
but the stack is global!

Conclusions

Ownership versus Permission

Problem: SL lacks support for passivity
Fractional Permissions

— Good for indefinite divisibility of permission

— Bad when divide/recombine pattern not obvious
Counting Permissions

— Good for Readers & Writers example
— No way to subdivide existing read permission

Fractional + Counting can be combined

